Automatically Optimised Billet Cutting in the Laminating Flux

Author: Dipl. Eng. Ion MICIU

IPA SA - AUTOMATION ENGINEERING; Calea Floreasca 167b, 72321 Bucharest, Romania, Tel: (+40-1) 230 7616, Fax: (+40-1) 230 7063, E-mail: miciu@ipa.ro

Abstract. The automatic billet cutting system is formed of: (1) monitoring and measuring elements located in the laminating line: infrared photocells, pulse transducers, current relays; (2) programmable logic controller PLC integrated in a control desk CD in the control station (specific software: LOGICMASTER); (3) panel view with touch-screen OP, located in the same CD (specific software: WINCONFIGURATION); (4) IBM compatible PC, located in the control room (specific software: CIMPLICITY); (5) actuators: adjustable converters for the actuation of the motor driving the shears and the measuring roller MR1; (6) controlled equipment: rotary shears and measuring roller with their associated devices, roll stands. The automatic billet cutting system performs the following automatic operations:

- Through the monitoring and measuring elements and through the **PLC**, it calculates and measures the laminate cross section, laminate length when entering and exiting the roll stands; laminate speed when exiting the stand; billet cutting length; length of remaining laminate. Also, it commands and controls the circular motions of the shears.

- The system allows the operator's intervention in the laminating process (from the **OP**).

- It monitors the laminated batch on the PC (number, length, cross section of laminates and billets, etc.).

Keywords: automation, cutting, software, laminate.

1. DESCRIPTION OF THE CONTINUOUS FLUX CUTTING LINE

1.1. Structure and technical characteristics of the cutting line machines

The laminating line in the cutting area (Fig. 2) consists of the following main machines (listed in reverse order of the laminating and cutting process): *shears* (with driving gear and associated motors); *measuring roller* MR₁; *stands* $k_{10},...k_7$, k_6 ; *photocells* $B_7,...B_0$ along the line between the area of discharge of the cut laminate and k_6 ; *pulse transducers* G_1 , G_4 , G_3 , G_2 from: MR₁, shears, k_7 and k_6 .

The optimised cutting control system consists of: *in-line elements* ($G_1...G_4$: speed, lengths, angles; $B_0...B_7$; tachogenerators; current relays F_1 , F_2); *control desk CD* mounted in the control station and including: *PLC* which controls the cutting process based on its application program; *operator panel OP*, serially connected to the PLC, which displays process data and sends to the PLC the operator's commands keyed in from the OP display; *non-stabilized continuous voltage supply U*₁ for feeding the line elements and the PLC inputs and outputs; *IBM PC* for cutting process monitoring.

1.2. Cutting process

1.2.1. Operating modes

The control of the rotary shears, by means of the optimising system, can be made in four operating modes, selectable from the operator's panel **OP**:

1. **TEST** mode: for testing the machines with no laminate in the line. In this mode, it is

possible to test both the shears control mode (with adjustment from the **OP** of the repetition time interval) and the line elements.

2. Cutting mode with **PHOTOCELL** B_7 : In this mode, cutting is performed automatically according to the signal indicating the presence of the laminate, generated by photocell B_7 , and to the time set by the operator from the **OP**, in the **PLC**. This mode is used in case of failure of the measuring transducers and line photocells.

3. AUTOMATIC cutting mode: In this mode, cutting is performed automatically (including head and tail cutting and remainder cutting on condition that it is not in the range of 1...3 m), controlled by the PLC, based on the indications supplied by the line elements, the lengths being preset by the operator from the **OP**, all operations being performed in real time.

4. **OPTIMISED** cutting mode: In this mode, cutting is performed automatically optimised, being controlled by the **PLC** based on the information supplied by the pulse transducers and photocells in the line, the cutting lengths being calculated automatically by the **PLC** according to the range preset from the **OP** with "zero" remainder condition, displayed on the **OP** and accepted by the operator from the **CD**, all operations being performed in real time.

1.2.2. Operating mode

The laminate moves at a constant speed in the range of 1...4.5m/s, during which time the shears will have to cut a preset length in the range of 5,400...16,000 mm (with 0,06% accuracy). The cutting length is selected by the operator from the **OP**. The gear driving the shears knives has a circular motion during which the knives remain in vertical position. **The operating cycle of the rotary shears knives** is the following, for a complete rotation of 360° :

- the shears starts from the *idle position* (0^0) and **accelerates** the motion up to an angle automatically determined by the **PLC** depending on the laminated section; this point is located before the contact point between the shears and the laminate; the *accelerated motion* is controlled in the ignitron converter through speed controller and acceleration controller at an induced current of approx. 2780 A; the *speed of the knives driving motors (peripheral speed of the knives) and the acceleration time* \mathbf{t}_a are calculated automatically by the **PLC** and they modify automatically depending on the *speed correction* \mathbf{v}_c given by the measuring roller **MR**₁ based on the formulas given below; the purpose of the determination in advance of the *advance length* of the laminate which is added to the time corresponding to the imposed cutting length for the exact determination of the cutting point when the cutting current is released:

- advance length:	$L_{av} = a_*(k/\cos\alpha_t) * v_e^2 + b_*(\cos\alpha_t/k)$	(1)
- acceleration time:	$t_a = 2 \cdot a \cdot (k \cos \alpha_t) \cdot v_e$	(2)
- acceleration angle:	$\alpha_{a} = [(1/2) \cdot \omega \cdot t_{a}] \cdot (180^{0}/\pi); \omega = (2 \cdot \pi \cdot n)/60$	(3)
	$\alpha_a = 3 \cdot n \cdot t_a$ (4); $\alpha_a = 6 \cdot a \cdot (30/\pi \cdot R) \cdot (k/\cos\alpha_t)^2 \cdot v_e^2$	(5)
- driving motor speed:	$n = i_*(30/\pi_*R)_* (k/\cos\alpha_t)_*v_e$	(6)
- acceleration constant a :	$a=[(\Sigma GD^{2}*i)/(2*375*M_{b})]*(30/\pi*R)$	(7)
- constant speed time:	$t_c = b_*(\cos\alpha_t/k)/v_e$	(8)
- constant speed angle:	$\alpha_{c}=180^{0}-\alpha_{a}$	(9)
- cutting angle:	$\alpha_{t} = \arccos(1-c/R_{*}\sqrt{2})=28^{0}38^{0}$	(10)

where: **c**-side of the square of the cross section of the laminate; $v_e=1...4.5$ m/s-laminate speed when exiting mill train 2 (stand k_{10}); **R**, **i**, **M**_b, **\Sigma**GD², **k**-parameters of the shears

- when reaching the *cutting point* the converter receives a *cutting current setpoint* I_t of approx. 4000 A during the interval of laminate cutting $(\pm 14^0...\pm 19^0$ around the value of 180^0); the speed of the knives must be equal to the laminate displacement speed v_e or a little higher (by 2%); after cutting, the *speed and acceleration controllers* and the knife is driven at *constant speed* with a current of 2780 A over the angular distance $180^0+\alpha_t/2$;

- when reaching the point of $180^{0}+\alpha_{t}/2$ the *braking* of the knives starts until reaching the zero position, $(345^{0}...0^{0}...15^{0})$.

2. DESCRIPTION OF THE OPTIMISATION SYSTEM

2.1. Shears cutting cycle

The figure below (Fig. 1) shows the diagram of the motion of the lower and upper knives of the rotary shears over a complete rotation of 360° (which represents a cutting cycle). The shears knives wait in the idle position (A and A', antipodal to the cutting point T). The motors driving the shears are stopped. The shears operate in start-stop mode. A cutting cycle involves the travel in direct trigonometrical direction (upper knife), in reverse direction respectively (lower knife) over the circular path and the return to the idle position. In order to define the motion, the following values shall be considered: **angle** α for *the momentary knife position;* idle position angle $\alpha_0=0^{\circ}$; performed cutting angle $\alpha=180^{\circ}$; cutting angle α_t

corresponding to the arc CT, C being the point where the knife touches the material; acceleration angle α_a corresponding to the arc AB, B being the point where the necessary peripheral speed v_e is reached; laminating speed v_e with which the laminate comes out of the last stand k_{10} from the mill train; angle α_c of travel at constant speed corresponding to the arc BT. The values corresponding to the arcs are approximately: AB=26⁰...154⁰, AT=180⁰, AD=208⁰...218⁰. Point D corresponds to the start of the knives braking.

2.2. Cutting sequence control

The cutting control consists in commands generated by the **PLC** (through the output) to the converter supplying the shears driving motors simultaneously with the creation and transmission of the speed setpoint \mathbf{n}^* in acceleration mode (through analog output). The moment of generation of the cutting command is established by means of the two counters: of head and remainder monitoring and of cutting length.

The counters in the PLC receive, through the pulse counting input, the pulses from the counter G_4 , located on the axle of the measuring roller MR_1 . Between the cutting command and the actual performance of the cutting, the material moves over a distance – advance length L_{av} – given by the relation (1). As the cutting command must precede the passing of the cutting length given by the relation above, the moment when the counter commands the idle position monitoring block is not the reaching of zero but the reaching of the constant term "b". The head *counter* is forced to the value set from the **OP** when photocell B_5 is excited. The loaded value also contains the distance between photocell \mathbf{B}_5 and the closed position of the knives. The length counter is loaded with the value set from the OP when the cutting signal is received. Photocell B_5 commands the raising of the measuring roller MR₁, which is made with a time delay from the moment of its excitation (material presence) as well as its lowering when the material disappears. A separate counter counts the pulses from the measuring roller MR_1 between two cuttings. In this way it can be seen if the billet was cut at the correct length. The measured length (real) of the cut billet is displayed on the OP. The same counter also performs the supervision of the tail simulating the presence of the material even after the tail has disappeared from the photocell range and inhibiting the tail cutting for a remaining length of 1 to 3 m.

2.3. Control of the OPTIMISED cutting system

Due to the fact that the length varies from one ingot to another within very wide limits, the last piece resulted has a length in the range $0...L_{imposed}$, non-controlled. Although $L_{imposed}$ can vary (for certain sections and destinations within the limits of a range), however the uncertainty regarding the total length resulted after lamination makes it impossible to eliminate this drawback, which leads to a high percentage of material losses. The *exit length* L_e cannot be measured in advance because the cutting is made during lamination. There resulted the necessity

of a control system focused on fulfilling a null remainder criteria. The cutting optimisation system estimates the value of the exit length L_e , adopts and presets an imposed value for the optimum cutting length which satisfies the optimum criteria: L_{min} <L_{opt}<L_{max} (11)Remainder (R)=0. If N is the total number of cut billets, then: $N_*L_{min} < L_e < N_*L_{max}$; $0 < (L_e - N_* L_{min})/N < L_{max} - L_{min}$ from which: $N > (L_e - N_* L_{min})/(L_{max} - L_{min}) = R/\Delta L$ (12) where: $0 < R < L_{min}$ (13)

The least favourable case for fulfilling (12) is when **R** is maximum, that is $\mathbf{R} > \mathbf{L}_{\min}$, the range ΔL being given for a certain destination N> L_{min} / ΔL (14)

The higher L_{min} and the lower ΔL , the better can be satisfied the optimum criteria (1) only for longer ingots. For shorter ingots, a loosening of the criteria was foreseen, namely: (15)

 $R > 6,000 \text{ mm}; L_{min} < L_{opt} < L_{max}$ The calculation principle for achieving (1), (5) respectively by the control system is the following: The estimation of the total length of the laminate when exiting the mill

(16) train L_e is made on the basis of the constant volume principle: $L_e * v_i = L_i * v_e = ct$. where: L_i = length when entering the stand; L_e = length when exiting the stand; v_i = speed of laminate entering the stand; v_e = speed of laminate exiting the stand $L_e = L_i \times v_e / v_i$ (17) Therefore, knowing L_i and the ratio of the speeds v_e/v_i (o constant), there results the exit length L_e . Once L_e is known, L_O is calculated (*actual length* which is introduced into the optimisation

calculation, after deducting the head and tail cuttings and the fixed lengths already cut when the value L_{opt} is available). The maximum number of optimised pieces is calculated: (18)

$N_{pcs} = L_Q / L_{min}$ (full part)

The optimum length is: $L_{opt} = L_{min} + (L_Q - N_{pcs} * L_{min}) / N_{pcs}$ (19)

In order to achieve the optimised cutting based on the above-presented criteria, considering the calculations, the operations and the decisions being complex, there resulted the necessity to use a microcomputer (PLC). For the purpose of optimising the cutting, the PLC performs in real time the following operations:

a) Input length measuring L_i

The input length L_i , with which the laminate enters stand k_7 , is measured by the PLC by means of the rotary pulse transducer G_2 , mounted on the axle of the driving motor of stand k_6 . The measuring correction γ of the input length L_{ik} (corresponding to the laminate number k of the batch of laminates exiting stand \mathbf{k}_6 is performed by means of a photocell \mathbf{B}_0 mounted after stand k_6 . The correction factor γ (mm/pulse) of the laminate length (or of the rotating speed of stand k_6 is calculated as being the ratio between a known length L_1 and the number of pulses N_{L1} from stand k_6 corresponding to length L_1 . The input length measuring is made with 4 photocells $\mathbf{B}_1 \dots \mathbf{B}_4$ mounted at known distances \mathbf{L}_3 (or \mathbf{L}_4 or \mathbf{L}_5 or \mathbf{L}_6) from the axle of the cylinder of stand \mathbf{k}_7 , on the roller track (in front of stand 7V/ \mathbf{k}_7). The measuring principle is the following:

To the known distance $L_{3,4,5,6}$ is added the distance measured from the top of the ingot tail to the photocell, from the moment when the material is caught in stand k_7 .

there follows: $L_i = L_{tail} + L_{3,4,5,6}$. $L_{3,4,5,6}$ is automatically selected by the PLC $\mathbf{L}_{\text{tail}} = \lambda \cdot \mathbf{N}_{\text{tail}}$ from the list of the four distances L3 ... L6, depending on the photocell which commanded the counter N_{tail} to stop (the first from $B_1, \dots B_4$ de-excited after $F_2 = (1)$). For this, the number of the respective photocell is stored in a register. The register is erased at the next counting. The measuring correction λ of the input speed v_{k2} into stand k_7 is made by means of a photocell $\mathbf{B}_{1,\dots}\mathbf{B}_{4}$. The correction factor λ (mm/pulse) is calculated as being the ratio between a known The calculation formula length $L_{3,4,5,6}$ and the number of pulses corresponding to this length. used is: (20) $\lambda_k = [L_{3,4,5,6}/N_{kB1,2,3,4}] \times i$

 $N_{kB1,2,3,4}$ – is the number of pulses from the pulse transducer G_3/k_7 corresponding to length $L_{3,4,5,6}$ (the sequence of counting these pulses, performed by a counting register in the PLC, is started by the de-activation of the first photocell of the four: $B_{1,...4}$ and it is stopped by the deactivation of current relay F_2).

The input speed v_{ik} with which the laminate number k enters stand k_7 is calculated with $V_{ik} = L_{ik} / T_{ik} [mm/s]$ the formula: (21)

where: $L_{ik} = N_{ik} \times \lambda_{k-1}$ [mm] - input speed of current laminate no. k entering stand k₇; N_{ik}-

number of pulses from pulse transducer G_3/k_7 corresponding to the total length L_{ik} of the current laminate k; λ_{k-1} -length correction for previous laminate; T_{ik} -time when pulses are counted N_{ik} . There results: $v_{ik}=(N_{ik}\times\lambda_{k-1})/T_{ik}\times1000xi$ [m/s] (22)

b) v_e / v_i speed ratio measuring

The ratio between the exit speed v_e from stand k_{10} and the input speed v_i in stand k_7 is made by means of two counters $G_4/MR1$, G_3/k_7 respectively from the PLC pulse counting block. During the same time interval, G_3 counts the pulses from stand k_7 and G_4 counts the pulses from the measuring roller of the shears MR_1 . Calculating the ratio of the two numbers we obtain a value of the speed ratio. Practically, the moment of starting the measurement was selected, the moment of the head cutting. For this, we have conditions $B_5 = 1$ (+24V signal = "roller lifting" introduced via the input in the digital input block from the PLC) and SCHNITT = 1 (+24V signal ="closed shears" introduced via the input in the pulse counting block from the PLC). It stops after G_4 has counted a fixed number of pulses N_{kMR1} which, once reached, detected with a coincidence circuit, stops oprește G_3 . Then: $v_e/v_i=(N_{kMR1}*v_k)/(N_{ik*}\lambda_{k-1})$ (23)

The above formula is deduced from the condition of "constant volume" during lamination, namely the volume of the laminate entering stand \mathbf{k}_7 (the first of the train $\mathbf{k}_7...\mathbf{k}_{10}$) is equal to the volume of the laminate exiting stand \mathbf{k}_{10} : $\mathbf{V}_{i\mathbf{k}7}=\mathbf{V}_{e\mathbf{k}10}$ or $\mathbf{L}_i\times\mathbf{s}_i = \mathbf{L}_e\times\mathbf{s}_e$ or, during the same time unit \mathbf{t} , what enters \mathbf{k}_7 (section \mathbf{s}_i , speed \mathbf{v}_i) must exit \mathbf{k}_{10} (section \mathbf{s}_e , speed \mathbf{v}_e):

$$\mathbf{L}_{i} / \mathbf{v}_{i} = \mathbf{L}_{e} / \mathbf{v}_{e} \text{ or } \mathbf{v}_{e} \times \mathbf{L}_{i} = \mathbf{v}_{i} \times \mathbf{L}_{e} \text{ or } \mathbf{v}_{e} / \mathbf{v}_{i} = \mathbf{L}_{e} / \mathbf{L}_{i}$$
(24)

The correction factor v_k of the measuring roller MR_1 (for the current laminate with number k, except for the first laminate going into cutting) is calculated as a ratio between the fixed distance L_{11} (distance between photocell B_6 and the shears in closed position, i.e. cutting performed) and the number of pulses counted by the PLC register corresponding to distance

 $\mathbf{L}_{11}: \mathbf{v}_{\mathbf{k}} = \mathbf{L}_{6} / \mathbf{N}_{\mathbf{k} \mathbf{L} 6} \quad [\text{mm/pulse}] \tag{25}$

Based on this information as well as on the data received from the **OP** of the shears ($L_{imposed}$, $L_{head cutting}$, section, shears on "optimised") and from the MR₁ frequency correction counter ($N_{correction}$), the **PLC** performs the necessary calculations, makes decisions and supplies: (L_{opt} , put on optimised, N_{pcs} , billet COUNTER, ingot number, remainder, shears correction command, correction sign). These are viewed on the operator panel **OP** at the control desk **CD** in the control station.

c) Data display.

Certain data processed by the **PLC** are displayed on the **OP** screen at the **CD**. The displayed screens contain a certain number of data under numerical or graphic form. The display is of "touch screen" type, allowing modification of some displayed parameters. These modifications can also be made from the five multi-functional keys of the **OP**.

3. APPLICATION

The automatic system presented above, is built and applied by IPA SA at SIDERURGICA SA durring of year 2001. The **PLC** is GE Fanuc 90-30 equipped with 1 processor module, 2 high speed counters modules, 1 analog inputs and 2 analog outputs modules, 1 digital inputs and 1 digital outputs modules. The applicated softwares are LOGICMASTER for **PLC**, WINCONFIGURATION 3.2 for **PO** and CIMPLICITY for **PC**. The system can be applied in instalation requiring precision in cutting. The equipment complies with the international requirements regarding automation equipment and with ISO 9000 and ISO 9001 norms. The implementation of this system can result in significant savings in lamination material and power supply, shorter laminate cutting time, comfort in equipment operation, decreased failure rate.

4. REFFERENCES

- [1] ASEEA Journal
- [2] Brochure Siemens Simoreg

[3] M. Lungu, St. Gavat, G. Weinrich: "Modular d.c. converters"

Fig. 2