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Abstract: In this paper we present a design procedure for the motion control of a mobile robot
subject to kinematic constraints. The dynamics of the mobile robot is assumed to be completely
unknown, and is on-line identified using neural network based estimators. Both the form of the
controller and the adaptation laws of neural network weights are derived from a Lyapunov
analysis of stability. Under certain conditions, the tracking stability of the closed loop system,
and the convergence of the neural network weight updating process are guaranteed. Computer
simulations are included to demonstrate the performances of this neural network controller.
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1. INTRODUCTION
In the recent years, the artificial neural networks (NNs), with their strong learning

capability, have proven to be suitable tool for controlling complex nonlinear dynamic
systems [1], [5], [6], [7]. The basic idea behind the neural network (NN) based control
is to use a NN estimator to identify the unknown nonlinear dynamics and compensate
for it. Also, the NN based approach can deal with the control of nonlinear systems that
may not be linearly parameterizable, as required in the adaptive approach. With regard
to robotic domain, NNs have been widely adopted in the modelling and control of
robotic manipulators [4].

In this paper a design procedure for the motion control of a mobile robot subject
to kinematic constraints is presented. The dynamics of the mobile robot is assumed to
be completely unknown, and is on-line identified using NN based estimators. Both the
form of the controller and the adaptation laws of NN weights are derived from a
Lyapunov analysis of stability. Under certain conditions, the tracking stability of the
closed loop system, and the convergence of the NN weight updating process are
guaranteed. No preliminary learning stage of NN weights is required. Computer
simulations conducted in the case of a mobile robot with two independently actuated
wheels are included to demonstrate the performances of this NN controller by
comparison to a classical feedback controller.

2. KINEMATICS AND DYNAMICS OF A MOBILE ROBOT
The dynamics of a mobile robot subject to kinematic constrains has the form [2],

[4]:
   τδλ )()(),(),()( qBqAqqGqqqVqqM T =++++ DDDDD       (1)

where nq ℜ∈  is the vector of generalized coordinates, pℜ∈τ  is the torque input vector,
mℜ∈λ  is the vector of constraint forces, nnqM ×ℜ∈)(  is a symmetric and positive

definite inertia matrix, nnqqV ×ℜ∈),( D  is the centripetal and coriolis matrix,
nqqG ℜ∈),( D  is the friction and gravitational vector, nmqA ×ℜ∈)(  is the matrix

associated with constrains, nℜ∈δ  denotes bounded unknown disturbances including
unstructured dynamics, and pnqB ×ℜ∈)(  is the input transformation matrix.
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The m  kinematic constrains are described by
0)( =qqA D      (2)

Note that, in the following, the mnp −=  case is considered. With respect to the
dynamics of a mobile robot (1), the following properties hold [4].

Property 1:  )(qM  is a bounded symmetric and positive definite matrix.
Property 2:  The matrix VM 2−D  is skew symmetric [2], [4], that is

          ( )TVMVM 22 −−=− DD  with TVVM +=D  or, ( ) nT xxVMx ℜ∈∀=− ,02D        (3)

Assume that the robot is fully actuated. Let )()( mnnqS −×ℜ∈  denote a full rank
matrix formed by )( mn −  columns that span the null space of )(qA  defined in (2) i.e.,

       0)()( =qAqS TT       (4)

From (4), one can find an auxiliary vector mnt −ℜ∈)(ω  so that for all t,

         )()( tqSq ω=D       (5)
This is called the steering system where )(tω  can be regarded as an angular

velocity input vector. Equations (1) and (5) describe the dynamics equations of mobile
robot subject to kinematic constrains. Multiplying both sides of (1) by TS and using (4)
we obtain:

 τδ )(),(),()( qBSSqqGSqqqVSqqMS TTTTT =+++ DDDDD      (6)
Substituting (5) and its time derivative into (6) this can be written in a compact form, as

τδωω )()(),()( qBqGqqVqM =+++ DD      (7)

where MSSM T= , )( VSSMSV T += D , GSG T= , δδ TS= , and BSB T= .

Property 3:  The matrix VM 2−D  in (7) is skew symmetric.
Proof: )(222 VSSMSSMSSMSVM TTT +−+=− DDD SVMS T )2( −= D . Since
VM 2−D  is skew symmetric, therefore, VM 2−D  is also skew symmetric.

3. NEURAL NETWORK CONTROLLER DESIGN FOR A MOBILE ROBOT
3.1. Problem statement
In an application, a mobile robot is required to perform some tasks defined in its

task-space. In order to achieve this objective firstly, some reference trajectories )(tqd

are derived. Torque commands τ  are then generated by the controller to make the
mobile robot tracks the reference trajectories.

In this paper, it is assumed that the reference trajectories are available, i.e. they
have already been derived based on desired task-trajectories. The main concern is to
provide proper torque inputs that guarantee a stable tracking of reference trajectories in
the presence of parameter uncertainty and unknown disturbances.

3.2. Neural network controller design procedure
In this section, a NN-based control procedure for a stable tracking of a reference

trajectory for the mobile robot described by (5) and (7) is derived. The procedure steps
are as follows: a) the robot dynamics is redefined as an error dynamics based on a set of
appropriate chosen Lyapunov functions; b) a NN-based estimator is constructed and a
NN learning law is proposed; c) a new control law is derived and d) a proof on the
tracking stability of the overall closed-loop system and the boundedness on NN weight
estimation errors is derived.

From previous section it can be seen that for a mobile robot a tracking error may
be defined as
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qqq d −=~      (8)
Assume that there exist a Lyapunov function ),~(1 tqV , a positive continuous

function 0)(1 >tW  and a reference smooth feedback velocity )(tdω , such that [4]:

          )(~
~ 1

)(

11 tWq
q
V

t
V

dqSq

−≤
∂
∂

+
∂
∂

= ωD

D  when 0~ ≠q      (9)

Now, the objective is to derive proper torque input τ  in (7), such that the angular
velocity trajectory )(tω  defined in (5) tracks the reference velocity )(tdω .

Define the robot velocity tracking error ω~  as
dωωω −=~       (10)

Differentiating (10), multiplying both side by M  and substituting (7) into it yields
        τωωδωω )(),()()(~),(~)( qBqqVqMqGqqVqM dd =+++++ DDDD    (11)

Equation (11) represents the mobile robot dynamics in term of tracking errors.
Let us choose a Lyapunov function 2V  as

         ωω ~~
2
1

2 MV T=    (12)

Differentiating (12) along the system trajectories and using (11) and Property 3 yields

)(~~~
2
1~~

2 dd
TTT VMGBMMV ωωδτωωωωω −−−−=+= D

DDD    (13)

To design the robot torque input, we choose a Lyapunov function as

   2113 )~()~(
2
1 VVSMSVV T +=+= ωω    (14)

Differentiating (14) yields
       )(~)(13 dd

T VMGBtWV ωωδτω −−−−+−≤ DD δωψτω TT BtW ~)(~)(1 −−+−=    (15)
with the unknown nonlinear term

GVM dd ++= ωωψ D    (16)
The nonlinear term ψ  in (16) will be identified on-line by using a radial basis

function (RBF) NN estimator. It is known that RBF networks have capacity to
approximate any smooth function on a compact set n

xS ℜ⊂  [5], [6], [7]. If
n

xSf ℜ→⋅ :)(  is a smooth function and )}({ xϕ  is a RBFs basis set, then for each
continuous function )(⋅f , there exists a weight matrix W  such that

εϕ += )()( xWxf T   with  Nεε < ,  0>Nε    (17)
Then, the unknown function ψ  in (16) may by identified using a RBF net with

sufficiently high number nn  of nodes such that
    εψ += )(xhW T    (18)

where x  is the input pattern to the neural network defined as
   TTT

d
T
d

T
dqx ]~[ ωωω D=    (19)

)34( mnnnW −×ℜ∈  in (18) is the ideal and unknown weight matrix, which is assumed to be
constant and bounded by

B
T

F
WWWtrW ≤= )(    (20)

with BW  a known positive constant and FW ||||  the Frobenius norm. The basis functions
in vector )(xh can be chosen as Gaussian functions defined as

( ) niii nicxxh ,,2,1,exp)( 22
l=−−= σ     (21)

where  ic  are  centers,  and  iσ  are  widths,  which  are  chosen  apriori  and  kept  fixed
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throughout for simplicity. Then, during the learning process, only the weight matrix W
must to be adjusted. The estimates of ψ  are given by

            )(ˆˆ xhW T=ψ    (22)
Thus, the main objective is to design a proper control law and properly NN

learning laws, such that the unknown robot dynamics (16) can be compensated for by
the NN estimator (22), and the stability of the robot error dynamics (11) and the
boundedness on the estimation weights can be guaranteed. In this way we formulate the
following theorem.

Theorem. If for the system (7) the control law is chosen as
  )ˆ~(1 ψωτ +−= − kB    (23)

with ω~  given by (10), and the weight updating law for the neural net as

)ˆ~(ˆ WhW T ωµωβ +−=D     (24)
where 0>k  is the control gain, 0>β  is the learning rate and 0>µ  is a design
parameter, then, by properly choosing of k  and µ , the tracking errors of error
dynamics described by (5) and (11) and the NN estimation weights Ŵ  are all
guaranteed to be uniformly ultimately bounded (UUB).

Proof. Assume that the approximation (18) holds, for all x  in a compact set xS .
Substituting (23) into (15) yields

          δωεωωωω TTTTT hWktWV ~~~~~~)(13 −−−−−≤D    (25)

where WWW ˆ~ −= . Since 0)(1 >tW , from (25) one obtains
  )(~~~~~

3 δεωωωω +−−−≤ TTTT hWkVD    (26)
If kk min* =  and it is using the defined boundedness of ε , from (26) it follows that

)(~~~~ 2*
3 NN

TT hWkV δεωωω ++−−≤D  where δδ =N    (27)

Le us chose a Lyapunov function as

}~~{
2
1

3 WWtrVV T

β
+=    (28)

Differentiating (28) and substituting (27) into it yields

≤+= }~~{1
3 WWtrVV T DDD

β
{ })~ˆ(~1)(~~ 2* TT

NN hWWtrk ωβ
β

δεωω +−++− D    (29)

Substituting now (24) into (29) we obtain

          { }WWtrkV T
NN

ˆ~~)(~~ 2* ωµδεωω +++−≤D    (30)

Using [4],      { } { } 22 ~~~,~)~(~ˆ~
FFFFF

TT WWWWWWWWWtrWWtr −≤−=−=    (31)

relation (30) can be written as

)(~~~~~~ 22*
NNFFF

WWWkV δεωωµωµω ++−+−≤D

        




















++−







 −+−= NN
BB

F

WWWk δεµµωω
42

~~~
22

*    (32)

It can be seen that if the parameters µ  and *k  are chosen so that
     ( ) ωδεµ ~4)(42*

NNBWk ++>     (33)
then 0≤VD . According to Lyapunov theory and to LaSalle principle, this demonstrates
the UUB [3] of the tracking error ω~  and the NN weight errors W~  and, subsequently,
the weight estimates Ŵ . Therefore, the control torque (23) is also bounded.
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4. SIMULATION RESULTS
In this section, an adaptive NN-based tracking controller is designed for the

kinematic and the dynamic model corresponding to a mobile robot with two actuated
wheels, shown in Fig. 1. The performance
of this controller is compared to the perfor-
mance of a feedback controller designed for
the kinematic model like in [2]. The confi-
guration of the mobile robot can be
described by five generalized coordinates:

     T
rryxq ][ θθφ=     (34)

where ),( yx  are the coordinates of the
origin 0P , φ  is the heading angle of the
mobile robot, and rθ  and lθ  are the angles
of the rights and the left driving wheels. Let
denote by cm  and wm  the mass of the robot
body and a motor-wheel respectively, and wc II ,  and mI  the moment of inertia of the
body about the vertical axis through cP  (mass center of mobile robot), the motor-wheel
about the wheel axis, and the motor-wheel about the wheel diameter, respectively. The
kinematic model has the form (5) where

      
















=
10

2
sin

2
cos

2

01
2

sin
2

cos
2)(

b
rrr
b
rrr

qS T

φφ

φφ
, 








=

l

r

ω
ω

ω    (35)

If we denote by mrv  and mrω  the linear and angular velocities of the mobile robot at the
point 0P , the simplest kinematic form of this mobile robot is:

           
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   (36)

The dynamic model has the form (7) where 0=dτ  and BVM ,,  are expressed as [4]:
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with wc mmm 2+= , mcwc IIbmdmI 22 22 +++= .    (37)
Let the reference trajectory of the robot be prescribed as
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where refref yx ,  and refφ  are the configure of the reference robot, and refv  and refω  are
its reference inputs. The tracking errors denoted by 321 ,, eee  are defined as [2]
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The input feedback control denoted by cv  and cω  which make 321 ,, eee
converge asymptotically to zero, are given by [2]:

x
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Fig.1. A mobile robot with two actuated wheels
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where positive constants 321 ,, kkk  are control gains.
The values of physical and design parameter are [2]: a = 2, b = 0.75, d = 0.3, r = 0.15, mc

= 30, mw =1, Ic =15.625, Iw =0.005, Im = 0.0025, k1 = k2 = k3 = 5. The reference inputs are chosen
as follow [2]: )5,0[∈t : )),5/cos(1(25.0 tvref π−= 0=refw ; )20,5[∈t : ,5.0=refv 0=refw ;

)25,20[∈t : )),5/cos(1(25.0 tvref π+= 0=refw ; )30,25[∈t : )),5/2cos(1(15.0 tvref ππ −=
5.1/refref vw −= ; )35,30[∈t : )),5/2cos(1(15.0 tvref ππ −= 5.1/refref vw = ; )40,35[∈t :

)),5/cos(1(25.0 tvref π+= 0=refw ; )50,40[∈t : ,5.0=refv 0=refw .
The simulation results using a RBF-NN controller designed according presented

procedure are shown in Figs. 2-5. The network weights were initialized with zero, and the
widths of Gaussian functions were chosen 0.025. The values of design parameters used in
simulations are: β = 0.025, µ = 0.005, k = 0.02.

        vref

   rω
            refω

         lω

          Time [s]                  Time [s]

Fig.2. Reference inputs vref, refω      Fig. 3. Angular velocities lr ωω ,
 y

     leftτ                  Real robot trajectory

     rightτ              Reference trajectory

    Time [s]       x

  Fig. 4. Torque comands lr ττ ,         Fig. 5. Mobile robot trajectory

5. CONCLUSIONS
In this paper a design procedure for the motion adaptive control of a mobile robot

subject to kinematic constraints was presented. The unknown dynamics of the mobile
robot was on-line identified using NN-based estimators. The form of the controller and
the adaptation laws of NN weights were derived from a Lyapunov analysis of stability.
The simulation results demonstrate a good behaviour of this adaptive NN controller.
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