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ABSTRACT 
The purpose of this paper is to propose a Neural-Q_learning approach designed for online 

learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized 
by a multi-layer neural network allowing the use of continuous states and actions. The algorithm 
uses a database of the most recent learning samples to accelerate and guarantee the 
convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive 
behavior which maps sensorial states to robot control actions. A group of these behaviors 
constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on 
the description of the Neural-Q_learning based behaviors showing their performance with an 
autonomous underwater vehicle (AUV) in a target following mission. Simulated experiments 
demonstrate the convergence and stability of the learning system, pointing out its suitability for 
online robot learning. Advantages and limitations are discussed. 

Keywords: Robot Learning, Reinforcement Learning, Behavior-based Robotics, 
Autonomous Underwater Vehicles. 
 

1   INTRODUCTION 
 

A commonly used methodology in robot learning is Reinforcement Learning (RL) 
[6]. In RL, an agent tries to maximize a scalar evaluation (reward or punishment) of its 
interaction with the environment. The goal of a RL system is to find an optimal policy 
which maps the state of the environment to an action which in turn will maximize the 
accumulated future rewards. Most RL techniques are based on Finite Markov Decision 
Processes (FMDP) causing finite state and action spaces. The main advantage of RL is 
that it does not use any knowledge database, as do most forms of machine learning, 
making this class of learning suitable for online robot learning. The main disadvantages 
are a longer convergence time and the lack of generalization among continuous 
variables. The latter is one of the most active research topics in RL. 
 

This paper proposes a Neural-Q_learning (NQL) [4] approach, a kind of RL 
algorithm, designed for online learning of simple and reactive robot behaviors. Our 
approach differentiates from other NQL proposals in that we implement the Q-function 
into a NN directly instead of breaking the problem down into a finite set of actions, 
features or clusters. This NQL implementation, known as direct Q_learning [2], is the 
simplest and straightest way to generalize with a NN. This implies more learning 
capabilities and causes instability in the learning of the optimal state/action mapping. To 
avoid this problem, the proposed algorithm introduces a database of the most recent and 
representative learning samples from the whole state/action space. These samples are 
repeatedly used in the NN weight update phase, assuring the convergence of the NN to 
the optimal Q_function. This NQL algorithm was conceived to learn the internal 
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state/action mapping of a reactive behavior. By 
combining several NQL-behaviors, a high level 
control scheme can be designed to achieve simple 
missions with an autonomous robot. Behavior 
coordination is done through a hybrid coordinator 
[3] which does not need any tuning phase. This 
paper demonstrates the feasibility of the proposed 
NQL algorithm with simulated experiments using 
the underwater robot URIS, see figure 1. A three-
dimensional target following mission with two 
behaviors, target following and obstacle avoidance, 
were learnt using NQL. The results obtained show the convergence of the NQL-based 
behaviors into an optimal policy, and therefore, the achievement of the mission. The 
structure of this paper is as follows. In section 2, an overall description of the behavior-
based control scheme is presented. Section 3 introduces the proposed Neural-
Q_learning approach for behavior learning. In section 4, the simulated experiments with 
URIS’s AUV are detailed and discussed. And finally, conclusions and future work are 
presented in section 5. 
 

2   BEHAVIOR-BASED CONTROL SCHEME 
 

A set of simple behaviors and a coordinator constitute the behavior-based control 
scheme [1]. For a given task, the behaviors, with the corresponding priorities among 
them, must be determined. Each behavior has an independent goal which tries to 
accomplish by perceiving the state of the environment and proposing a control action. 
The coordinator is in charge of choosing the final behavior action to be followed. Two 
main coordination methodologies can be found. In competitive coordinators a single 
behavior is selected whereas in cooperative coordinators several behavior responses are 
superposed. An hybrid coordinator [3] between competitive and cooperative 
methodologies is used. The general structure is shown in figure 2. This coordinator is 
based on normalized behavior outputs. Each output contains a three-dimensional vector 
“vi” which represents the velocity proposed by the behavior and, associated with this 
vector, an activation level “ai” indicates the level of need of controlling the robot. This 
value is between 0 and 1, see figure 3. The hybrid coordination system is implemented 
with a set of hierarchical hybrid nodes, see figure 3. These nodes have two inputs and 
generate a merged normalized control response. One of the inputs is used by a dominant 
behavior which suppresses the responses of the non-dominant behavior when the first is 
completely activated (ai=1). However, when the dominant behavior is only partially 
activated (0<ai<1), the final  response will be a combination of both inputs. The basic 
idea is to use the optimized paths from cooperation when the predominant behavior is 
not completely active. Non-dominant behaviors can modify the responses of dominant 
behaviors slightly when they aren’t completely activated. When non-decisive situations 
occur, cooperation between behaviors is allowed. Nevertheless, robustness is present 
when dealing with critical situations. The hybrid nodes do not need any tuning phase. 
The coordination of a set of behaviors is defined hierarchically, classifying each 
behavior depending on its priority. 

Figure 1. URIS’s AUV. 
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3   NEURAL-Q_LEARNING BASED BEHAVIORS  
 

A Neural-Q_learning approach is used to learn the mapping between the state and 
action spaces (policy). The state space is the sensor information perceived by the robot 
and is needed by the behavior in order to accomplish its goal. The action space is the 
velocity set-points the robot should follow.  

 
3.1   Q_learning 
Q-learning [7] is a temporal difference 

algorithm, see [6], designed to solve the 
reinforcement learning problem (RLP). 
Temporal difference  algorithms solve the 
RLP without knowing the transition 
probabilities between the states of the Finite 
Markov Decision Problem (FMDP), and 
therefore, in our context, the dynamics of 
the robot environment does not have to be 
known. Temporal difference methods are 
also suitable for learning incrementally, or 
online robot learning. The importance of online learning resides in the possibility of 
executing new behaviors without any previous phases such as “on-site manual tuning” 
or “data collection + offline learning”. Another important characteristic of Q_learning is 
that it is an off-policy algorithm. The optimal state/action mapping is learnt 
independently of the policy being followed. It uses the perceived states (s), the taken 
actions (a) and the received reinforcements (r) to update the values of a table, denoted 
as Q(s,a) or Q-function. If state/action pairs are continually visited, the Q values 
converge to a greedy policy, in which the maximum Q value for a given state points to 
the optimal action. Figure 4 shows the Q_learning algorithm.  

 
3.2   Neural Q_learning 
When working with continuous states and actions, as is usual in robotics, the Q-

function table becomes too large for the required state/action resolution. In these cases, 
tabular Q-learning needs a very long learning time and memory requirements which 
makes the implementation of the algorithm in a real-time control architecture 
impractical. The use of a Neural Network (NN) to generalize among states and actions 

Figure 2: Behavior-based architecture with 
the hybrid coordination system. 

Figure 3: Normalized output of a behavior and 
equations of the hierarchical hybrid node. 
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reduces the number of values stored in the 
Q-function table to a set of NN weights. 
The implementation of a feed-forward NN 
with the backpropagation algorithm [5] is 
known as direct Q_learning [2]. The Direct 
Q-learning algorithm has no convergence 
proofs and has proved to be unstable when 
trying to learn a behavior. The instability 
was caused by the lack of weight updating 
in the whole state/action space. To solve 
this limitation the proposed Neural-
Q_learning based behaviors maintain a 
database of the most recent learning 
samples. All the samples of this database 
are used at each iteration to update the 
weights of the NN. This assures a 
generalization in the whole visited 
state/action space instead of a local 
generalization in the current visited space. 
Each learning sample is composed of the 
initial state st, the action at, the new state 
st+1 and the reward rt. The action used by 
the NQL behaviors, is the one sent by the 
coordinator to the low-level control system. 
For this reason, a feedback of the last 
generated control action is needed, see figure 3. Finally, in order to prevent a huge 
database, each new learning sample substitutes old samples closer than a threshold. The 
distance between samples is geometrically computed from both {st, at, rt} vectors. It is 
important to maintain a database with the most recent samples to keep the current 
dynamics of the environment. The structure and phases of the proposed neural 
Q_learning algorithm is shown in figure 5. The Q_function approximated by the NN is 

1 1t+1a
ˆ ˆ+  maxt t t t tQ(s ,a ) = r Q(s ,a )γ + + . Therefore, its inputs are the continuous state and 

actions, and the output is the Q_value. According to the output value, the error is found 
and the weights are updated using the standard backpropagation algorithm. A two layer 
NN has been used with a hyperbolic tangent and lineal activation functions for the first 
and second layers respectively. Weights are initialized randomly. To find the action 
which maximizes the Q_value, the network evaluates all the possible actions which 
could be applied. Although actions are continuous, a finite set, which guarantees 
sufficient resolution, is used.  

 
3.3   Reinforcement Function 
The reinforcement function determines the policy learnt by the behavior. The 

definition of this function requires knowledge from a human designer. The function 
associates each state with a reward “r”. In our approach, we have reduced the possible 
values to three : {-1, 0, 1}. By associating the desired states with “r=1” and the 
undesired with “r = -1”, the algorithm learns how to act. 
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4   EXPERIMENTATION WITH AN AUV 

The kind of robot which we are working on is an Autonomous Underwater Vehicle 
(AUV) called URIS. The proposed application consists of following a target by means 
of a camera and avoiding obstacles using a set of sonar sensors. This application was 
designed to be carried out in a swimming pool where light absorption does not apply. 
URIS, see figure 1, is a small-sized non-holonomic AUV designed and built at the 
University of Girona. To accomplish this mission a Behavior-based architecture with 
three behaviors was designed. Each behavior has its own input from sensors and 
generates a 3D-speed vector defined by (u, w, r). Figure 6 shows the schema of the 
architecture. The three behaviors are: 

• Obstacle avoidance. The goal is to avoid any obstacles perceived by means of 7 
sonar sensors, see figure 7. The behavior is learnt using a NQL algorithm for each 
DOF (x,y,z). A reinforcement function gives negative rewards depending on the 
distance at which obstacles are detected.  

• Target following. The behavior follows the target using a video camera pointed 
towards X-axis, see figure 7. A real-time tracking board based on chromatic 
characteristics gives the relative position of the target. The behavior is learnt using a 
NQL algorithm for each DOF (x,y,z). The reinforcement function gives negative 
rewards  when  the  target  moves  away from the position X=5, Y=0 and Z=0.  

• Target recovery. The goal of this behavior is to recover the target when it 
disappears from the camera view. When the tracking system loses the target, the 
behavior spins and moves the vehicle vertically in the direction last seen. This 
behavior is not learned but preprogrammed.  

A simulated environment was developed in order to realistically experiment with the 
vehicle, see figure 8. The simulation contained the hydrodynamics model of the 
vehicle and the identified noise and delays of the sensors and actuators. A moving 
target was introduced carrying out a 3D closed path repeatedly. The velocity of the 
target changed between 0 and 0.17 m/s (60% of the maximum velocity of URIS). 
“Target following” and “Obstacle avoidance” behaviors were implemented using the 
neural Q_learning algorithm. Each degree of freedom was implemented independently 
with its inputs/outputs and rewards. At the beginning, each behavior was learnt alone, 
without the influence of the other. The number of iterations required to learn each 
DOF was approximately 150 (Sample time=1s). Figure 9 shows the evolution of the 
“x” DOF of the “target following” behavior during its training. It can be seen how the 
algorithm explores  the  action space  and  learns  how  to  track  the  target. Once the 3  
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        Figure 6. Schema of the architecture.     Figure 7.  Sonar transducer and video camera layout. 
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DOFs of both behaviors were 
completely learnt, the mission was 
tested. Figure 10 shows the tracking 
error evolution during the mission. 
When the vehicle was close to an 
obstacle, the obstacle avoidance 
behavior took partial control of the 
vehicle, and therefore, the tracking 
error increased. However, the hybrid 
coordination system generated a 
cooperative response between both 
behaviors, and the target was not lost. 

 

 
 

 
 

 
5   CONCLUSIONS AND FUTURE WORK 

A proposal of Neural-Q_learning based behaviors have been presented. The 
simulated results showed the feasibility of the hybrid approach as well as the 
convergence of the learning algorithm. The approach proved suitable for learning 
behaviors from a reactive control scheme. The Neural Network generalization of the 
Q_function was able to map an optimal state/action policy in a short time. In the 
presented work, each DOF was learnt independently. on the realization of real 
experiments and on the improvement of the RL-based behaviors in order to learn 
simultaneously all the behaviors.  
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Figure 9. Learning evolution of the “target 
following” behavior (x axis). 

 

Figure 10. Tracking error evolution during a 
mission.  

 

Figure 8, MMVVE running a simulation. 


