
A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing,

Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 1 of 6

Learning reactive robot behaviors with Neural-Q_leaning

M. Carreras, P. Ridao, J. Batlle, T. Nicosebici and Z. Ursulovici

Institute of Informatics and Applications, University of Girona
Edifici Politècnica IV, Campus Montilivi, 17071 Girona, Spain

{ marcc,pere,jbatlle,tudor,zoranu }@eia.udg.es

ABSTRACT
The purpose of this paper is to propose a Neural-Q_learning approach designed for online

learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized
by a multi-layer neural network allowing the use of continuous states and actions. The algorithm
uses a database of the most recent learning samples to accelerate and guarantee the
convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive
behavior which maps sensorial states to robot control actions. A group of these behaviors
constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on
the description of the Neural-Q_learning based behaviors showing their performance with an
autonomous underwater vehicle (AUV) in a target following mission. Simulated experiments
demonstrate the convergence and stability of the learning system, pointing out its suitability for
online robot learning. Advantages and limitations are discussed.

Keywords: Robot Learning, Reinforcement Learning, Behavior-based Robotics,
Autonomous Underwater Vehicles.

1 INTRODUCTION

A commonly used methodology in robot learning is Reinforcement Learning (RL)
[6]. In RL, an agent tries to maximize a scalar evaluation (reward or punishment) of its
interaction with the environment. The goal of a RL system is to find an optimal policy
which maps the state of the environment to an action which in turn will maximize the
accumulated future rewards. Most RL techniques are based on Finite Markov Decision
Processes (FMDP) causing finite state and action spaces. The main advantage of RL is
that it does not use any knowledge database, as do most forms of machine learning,
making this class of learning suitable for online robot learning. The main disadvantages
are a longer convergence time and the lack of generalization among continuous
variables. The latter is one of the most active research topics in RL.

This paper proposes a Neural-Q_learning (NQL) [4] approach, a kind of RL
algorithm, designed for online learning of simple and reactive robot behaviors. Our
approach differentiates from other NQL proposals in that we implement the Q-function
into a NN directly instead of breaking the problem down into a finite set of actions,
features or clusters. This NQL implementation, known as direct Q_learning [2], is the
simplest and straightest way to generalize with a NN. This implies more learning
capabilities and causes instability in the learning of the optimal state/action mapping. To
avoid this problem, the proposed algorithm introduces a database of the most recent and
representative learning samples from the whole state/action space. These samples are
repeatedly used in the NN weight update phase, assuring the convergence of the NN to
the optimal Q_function. This NQL algorithm was conceived to learn the internal

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing,

Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 2 of 6

state/action mapping of a reactive behavior. By
combining several NQL-behaviors, a high level
control scheme can be designed to achieve simple
missions with an autonomous robot. Behavior
coordination is done through a hybrid coordinator
[3] which does not need any tuning phase. This
paper demonstrates the feasibility of the proposed
NQL algorithm with simulated experiments using
the underwater robot URIS, see figure 1. A three-
dimensional target following mission with two
behaviors, target following and obstacle avoidance,
were learnt using NQL. The results obtained show the convergence of the NQL-based
behaviors into an optimal policy, and therefore, the achievement of the mission. The
structure of this paper is as follows. In section 2, an overall description of the behavior-
based control scheme is presented. Section 3 introduces the proposed Neural-
Q_learning approach for behavior learning. In section 4, the simulated experiments with
URIS’s AUV are detailed and discussed. And finally, conclusions and future work are
presented in section 5.

2 BEHAVIOR-BASED CONTROL SCHEME

A set of simple behaviors and a coordinator constitute the behavior-based control
scheme [1]. For a given task, the behaviors, with the corresponding priorities among
them, must be determined. Each behavior has an independent goal which tries to
accomplish by perceiving the state of the environment and proposing a control action.
The coordinator is in charge of choosing the final behavior action to be followed. Two
main coordination methodologies can be found. In competitive coordinators a single
behavior is selected whereas in cooperative coordinators several behavior responses are
superposed. An hybrid coordinator [3] between competitive and cooperative
methodologies is used. The general structure is shown in figure 2. This coordinator is
based on normalized behavior outputs. Each output contains a three-dimensional vector
“vi” which represents the velocity proposed by the behavior and, associated with this
vector, an activation level “ai” indicates the level of need of controlling the robot. This
value is between 0 and 1, see figure 3. The hybrid coordination system is implemented
with a set of hierarchical hybrid nodes, see figure 3. These nodes have two inputs and
generate a merged normalized control response. One of the inputs is used by a dominant
behavior which suppresses the responses of the non-dominant behavior when the first is
completely activated (ai=1). However, when the dominant behavior is only partially
activated (0<ai<1), the final response will be a combination of both inputs. The basic
idea is to use the optimized paths from cooperation when the predominant behavior is
not completely active. Non-dominant behaviors can modify the responses of dominant
behaviors slightly when they aren’t completely activated. When non-decisive situations
occur, cooperation between behaviors is allowed. Nevertheless, robustness is present
when dealing with critical situations. The hybrid nodes do not need any tuning phase.
The coordination of a set of behaviors is defined hierarchically, classifying each
behavior depending on its priority.

Figure 1. URIS’s AUV.

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing,

Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 3 of 6

NQL-Behav ior 1

NQL-Behav ior 2

NQL-Behav ior 4S
T
I

M
U
L
U
S

NQL-Behav ior 3se
ns

or
s

HYBRID
COORDINATOR

n21

D

ND

n34

D

ND

n2’1’

D

ND

co
nt

ro
l

ac
tio

n

 XL

YL

ZL

yixi

zi
vi

XL

YL

ZL

yixi

zi
vi

vi=(vi,x, vi,y, vi,z);

ai=[0 1]

vi=(vi,x, vi,y, vi,z);

ai=[0 1]

rd

rnd

ri
Dominant

Non-dominant

ni

ai ad + and ·(1 - ad)
2

if (ai>1) ai=1

ai ad + and ·(1 - ad)
2

if (ai>1) ai=1

Vi Vd·ad/ai +vnd ·and·(1 - ad)2 /ai

if (|vi|>1) vi= vi /|vi|

S bdbd

bndbnd
S

3 NEURAL-Q_LEARNING BASED BEHAVIORS

A Neural-Q_learning approach is used to learn the mapping between the state and
action spaces (policy). The state space is the sensor information perceived by the robot
and is needed by the behavior in order to accomplish its goal. The action space is the
velocity set-points the robot should follow.

3.1 Q_learning
Q-learning [7] is a temporal difference

algorithm, see [6], designed to solve the
reinforcement learning problem (RLP).
Temporal difference algorithms solve the
RLP without knowing the transition
probabilities between the states of the Finite
Markov Decision Problem (FMDP), and
therefore, in our context, the dynamics of
the robot environment does not have to be
known. Temporal difference methods are
also suitable for learning incrementally, or
online robot learning. The importance of online learning resides in the possibility of
executing new behaviors without any previous phases such as “on-site manual tuning”
or “data collection + offline learning”. Another important characteristic of Q_learning is
that it is an off-policy algorithm. The optimal state/action mapping is learnt
independently of the policy being followed. It uses the perceived states (s), the taken
actions (a) and the received reinforcements (r) to update the values of a table, denoted
as Q(s,a) or Q-function. If state/action pairs are continually visited, the Q values
converge to a greedy policy, in which the maximum Q value for a given state points to
the optimal action. Figure 4 shows the Q_learning algorithm.

3.2 Neural Q_learning
When working with continuous states and actions, as is usual in robotics, the Q-

function table becomes too large for the required state/action resolution. In these cases,
tabular Q-learning needs a very long learning time and memory requirements which
makes the implementation of the algorithm in a real-time control architecture
impractical. The use of a Neural Network (NN) to generalize among states and actions

Figure 2: Behavior-based architecture with
the hybrid coordination system.

Figure 3: Normalized output of a behavior and
equations of the hierarchical hybrid node.

1. Initialize arbitrarily
2. Repeat:
 (a) s the current state

ˆ (b) choose an action that maximizes over all
 (c) -greedy action, carry out action in the world with

ˆ

t

t t

t

(s,a)

a Q(s ,a) a
a

Q

ε

←

 probability (1-), otherwise apply a random action
 (exploration)
 (d) Let the short term reward be , and the new state s

ˆ ˆ (e)
 + [+

t t+1

t t t t

t

r
Q(s ,a) = Q(s ,a)+

r

ε

α γ 1 1t+1a
ˆ ˆ -] max t t t tQ(s ,a) Q(s ,a)+ +

Figure 4: Q_learning algorithm.

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing,

Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 4 of 6

reduces the number of values stored in the
Q-function table to a set of NN weights.
The implementation of a feed-forward NN
with the backpropagation algorithm [5] is
known as direct Q_learning [2]. The Direct
Q-learning algorithm has no convergence
proofs and has proved to be unstable when
trying to learn a behavior. The instability
was caused by the lack of weight updating
in the whole state/action space. To solve
this limitation the proposed Neural-
Q_learning based behaviors maintain a
database of the most recent learning
samples. All the samples of this database
are used at each iteration to update the
weights of the NN. This assures a
generalization in the whole visited
state/action space instead of a local
generalization in the current visited space.
Each learning sample is composed of the
initial state st, the action at, the new state
st+1 and the reward rt. The action used by
the NQL behaviors, is the one sent by the
coordinator to the low-level control system.
For this reason, a feedback of the last
generated control action is needed, see figure 3. Finally, in order to prevent a huge
database, each new learning sample substitutes old samples closer than a threshold. The
distance between samples is geometrically computed from both {st, at, rt} vectors. It is
important to maintain a database with the most recent samples to keep the current
dynamics of the environment. The structure and phases of the proposed neural
Q_learning algorithm is shown in figure 5. The Q_function approximated by the NN is

1 1t+1a
ˆ ˆ+ maxt t t t tQ(s ,a) = r Q(s ,a)γ + + . Therefore, its inputs are the continuous state and

actions, and the output is the Q_value. According to the output value, the error is found
and the weights are updated using the standard backpropagation algorithm. A two layer
NN has been used with a hyperbolic tangent and lineal activation functions for the first
and second layers respectively. Weights are initialized randomly. To find the action
which maximizes the Q_value, the network evaluates all the possible actions which
could be applied. Although actions are continuous, a finite set, which guarantees
sufficient resolution, is used.

3.3 Reinforcement Function
The reinforcement function determines the policy learnt by the behavior. The

definition of this function requires knowledge from a human designer. The function
associates each state with a reward “r”. In our approach, we have reduced the possible
values to three : {-1, 0, 1}. By associating the desired states with “r=1” and the
undesired with “r = -1”, the algorithm learns how to act.

Reinforcement
function

state st+1 action at

Q(st,i ,a t,i) = r t,i +γ · maxQa’(st+1,i,a’)

Back-
propagation
learning

unit
delay

s t+1 r t s t at

amax|Q(st+1,amax)
=max(Q(s,a))

Q(st+1,amax)

ε-greedy

amax

P
H

A
SE

 1
P

H
A

SE
 2

P
H

A
SE

 3

R
EW

A
R

D

C
O

M
P

U
TA

TI
O

N
N

N
 W

EI
G

H
TS

U

PD
A

TE
A

C
TI

O
N

S

E
LE

C
TI

O
N

S

LE
A

R
N

IN
G

SA

M
PL

ES
 U

P
D

A
TE

1

-1
A

-1

0

10

P
H

A
S

E
 4

action at+1

s t+1

Figure 5: Neural Q_learning algorithm

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing,

Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 5 of 6

4 EXPERIMENTATION WITH AN AUV

The kind of robot which we are working on is an Autonomous Underwater Vehicle
(AUV) called URIS. The proposed application consists of following a target by means
of a camera and avoiding obstacles using a set of sonar sensors. This application was
designed to be carried out in a swimming pool where light absorption does not apply.
URIS, see figure 1, is a small-sized non-holonomic AUV designed and built at the
University of Girona. To accomplish this mission a Behavior-based architecture with
three behaviors was designed. Each behavior has its own input from sensors and
generates a 3D-speed vector defined by (u, w, r). Figure 6 shows the schema of the
architecture. The three behaviors are:

• Obstacle avoidance. The goal is to avoid any obstacles perceived by means of 7
sonar sensors, see figure 7. The behavior is learnt using a NQL algorithm for each
DOF (x,y,z). A reinforcement function gives negative rewards depending on the
distance at which obstacles are detected.

• Target following. The behavior follows the target using a video camera pointed
towards X-axis, see figure 7. A real-time tracking board based on chromatic
characteristics gives the relative position of the target. The behavior is learnt using a
NQL algorithm for each DOF (x,y,z). The reinforcement function gives negative
rewards when the target moves away from the position X=5, Y=0 and Z=0.

• Target recovery. The goal of this behavior is to recover the target when it
disappears from the camera view. When the tracking system loses the target, the
behavior spins and moves the vehicle vertically in the direction last seen. This
behavior is not learned but preprogrammed.

A simulated environment was developed in order to realistically experiment with the
vehicle, see figure 8. The simulation contained the hydrodynamics model of the
vehicle and the identified noise and delays of the sensors and actuators. A moving
target was introduced carrying out a 3D closed path repeatedly. The velocity of the
target changed between 0 and 0.17 m/s (60% of the maximum velocity of URIS).
“Target following” and “Obstacle avoidance” behaviors were implemented using the
neural Q_learning algorithm. Each degree of freedom was implemented independently
with its inputs/outputs and rewards. At the beginning, each behavior was learnt alone,
without the influence of the other. The number of iterations required to learn each
DOF was approximately 150 (Sample time=1s). Figure 9 shows the evolution of the
“x” DOF of the “target following” behavior during its training. It can be seen how the
algorithm explores the action space and learns how to track the target. Once the 3

β

d

β=10º
d=10 [m]
αH= 30º
αV= 22.5º

SF

SFR

SR

SB

SFL

SL

SD

x

y
x

αV

αH

camera view

sonar parameters

camera parameters

sonar beams

 Figure 6. Schema of the architecture. Figure 7. Sonar transducer and video camera layout.

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing,

Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 6 of 6

DOFs of both behaviors were
completely learnt, the mission was
tested. Figure 10 shows the tracking
error evolution during the mission.
When the vehicle was close to an
obstacle, the obstacle avoidance
behavior took partial control of the
vehicle, and therefore, the tracking
error increased. However, the hybrid
coordination system generated a
cooperative response between both
behaviors, and the target was not lost.

5 CONCLUSIONS AND FUTURE WORK

A proposal of Neural-Q_learning based behaviors have been presented. The
simulated results showed the feasibility of the hybrid approach as well as the
convergence of the learning algorithm. The approach proved suitable for learning
behaviors from a reactive control scheme. The Neural Network generalization of the
Q_function was able to map an optimal state/action policy in a short time. In the
presented work, each DOF was learnt independently. on the realization of real
experiments and on the improvement of the RL-based behaviors in order to learn
simultaneously all the behaviors.

REFERENCES

[1] R. Arkin, Behavior-based Robotics. MIT Press, 1998.
[2] K. Baird, ‘Residual Algorithms: Reinforcement Learning with Function Approximation’,

Machine Learning: Twelfth International Conference, San Francisco, USA, 1995.
[3] M. Carreras, J. Batlle and P. Ridao, ‘Hybrid Coordination of Reinforcement Learning-based

Behaviors for AUV control’, IEEE/RSJ IROS, Hawaii, USA 2001.
[4] C. Gaskett, D. Wettergreen and A. Zelinsky, ‘Q-learning in continuous state and action

spaces’, 12th Australian Joint Conference on Artificial Intelligence, Australia, 1999.
[5] S. Haykin, Neural Networks, a comprehensive foundation. Prentice Hall, 2nd ed., 1999.
[6] R. Sutton, and A. Barto, Reinforcement Learning, an introduction. MIT Press, 1998.
[7] C.J.C.H. Watkins and P. Dayan, ‘Q-learning’, Machine Learning, 8:279-292, 1992.

Figure 9. Learning evolution of the “target
following” behavior (x axis).

Figure 10. Tracking error evolution during a
mission.

Figure 8, MMVVE running a simulation.

