
A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

WEB/PHP BASED DISTRIBUTED BUILT-IN SELF-TEST
MANAGEMENT

Enyedi Sz., L. Miclea

Technical University of Cluj-Napoca, Automation Department

Bariţiu str. 26-28, Cluj-Napoca, Romania

 Szilard.Enyedi@aut.utcluj.ro, Liviu.Miclea@aut.utcluj.ro

Abstract

This paper presents a concept and experimental results on WEB/PHP based distributed
built-in self-test (DBIST) management. The devices and tests are selected in an electronic web
form, using an ordinary web browser, which then sends the selections to the DBIST server. The
server uses PHP scripts to start the selected tests on the selected devices. The scripts use TCP/IP
to communicate with the BIST modules of the devices. The BIST modules run the required tests
and return the results to the scripts, which generate a web page with the test results and send it
back to the requesting client (i.e. the user’s web browser).

In our experimental implementation, the PHP scripts generate a human-readable “test results”
page, but in future implementations, they can use raw TCP/IP or other protocols to
communicate with a central administrative authority or other DBIST networks, interact with
SQL databases or do other high or low level test configuration/test results management.

Keywords

BIST, DBIST, WEB, PHP, TCP/IP

1. INTRODUCTION

1.1. Generalities

This paper continues the work [1] of the authors for developing solutions for DBIST
systems. However, instead of CORBA or DCOM, we use PHP to give the user

1 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

possibility for test selection, communicate with the BIST modules, collect the tests’
results and display them for the user.

The example discussed here is a basic one, but allows a good understanding of the
principles.

1.2. DBIST

Built-in self-test has been around for quite a while. One of the current trends in BIST
technology is Distributed BIST, or DBIST. The distributed nature of DBIST means that
each of the modules in the DUT has its own BIST routine, which runs the test more or
less independently from the other modules. This way, the actual BIST of the whole
device is decomposed into smaller, dedicated BISTs, which should be simpler and
easier to develop and maintain.

1.3. PHP

1.3.1. Generalities

PHP (Personal Homepage Preprocessor) is a scripting language, used mostly on web
servers. The idea is that the PHP commands are embedded in the HTML file itself.
When a browser requests a page from the web server, the server first runs the PHP
interpreter on the requested file, and then sends the results to the requesting browser.

1.3.2. Example 1

<html>
<body>
<?php
echo "Test text.
";
?>
</body>
</html>

When the above example is parsed by the server’s PHP engine, the <?php … ?> tag is
replaced by the result of the contained PHP commands, i.e. by the string “Test
text.
”. Only then is the resulted page sent to the browser that requested it.

1.3.3. Example 2

This example displays a form in a web page, as shown in figure 1.

Figure 1 – the form as displayed in the browser; the user just typed in “Testing”.

And its source:

<form action="answer.php" method="post">
Value to send <input type="text" name="val">
<input type="submit">
</form>

2 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

When the user clicks on the “Submit” button, the form data is sent to the server, which
passes it to the “answer.php” script, shown below:

<html>
<head>

<title>Answer page</title>
</head>
<body>
The received value is: <?php echo $val; ?>.
</body>
</html>

The “answer.php” script receives the variables of the form and their filled-in values.
The script outputs a web page, in which the PHP tag has been replaced by the result of
the PHP code, that is the value of the received variable val, which is in fact the text the
user typed into the text box of the form. This “on the fly” webpage is then sent back to
the user, who will see in the browser window the text “The received value is: Testing”.

1.3.4. Combining DBIST with PHP

Web Web server
BIST 1 API

PHP Socket

BIST 2

Browser

Figure 2 – The structure of the DBIST system using PHP

The steps of the DBIST process:
• The browser requests from the Web server the page containing the PHP script;
• The server (actually, the PHP script) creates on the fly the form and sends it to

the requesting browser;
• The user fills the data in the form and sends it back to the server (by clicking

on the “Submit” button);
• The PHP script on the server opens a TCP/IP socket, connects to the specified

BIST module of the specified device and sends it the user-requested test;
• The contacted BIST module runs the requested test and returns the results to

the script, through the same TCP/IP connection;
• The script generates the results page and sends it to the user’s browser, which

displays it.

3 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

2. IMPLEMENTATION AND EXPERIMENTS

2.1. The experimental BIST module

The simplest BIST module [1] that we used in the experiments was a software
module, written in Visual Basic. The tests it can run check the available space on the
disk drives, their share names and other details.

Figure 3 – The BIST module’s graphical interface

The commands are expected in ASCII format, on TCP/IP socket no. 2811. The
program will receive commands and will execute the known ones. As a measure of
security, if the module receives an unknown command it will send it back.

If the command is correct the BIST module will execute the corresponding test and
will send back the results on the same port on which the command arrived.

The BIST module can be used also as stand-alone, through its graphical user interface.

2.2. The script

In order to exemplify the concept, we present parts of a PHP script that creates the
form, receives the selection from the user, connects to the BIST module, sends the test
selections and returns the results. For the sake of simplicity, we work with one BIST
module of the DBIST system, i.e. we omitted the selection of the device who’s BIST to
run.

The code for the form is simple and will not be presented. We focus on the BIST
connectivity part.

4 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

The form, as it is displayed in the browser:

Test configuration

BIST module address: 127.0.0.1

 Requested test (case sensitive): TESTALL

Test

We try to connect to the BIST module at the address specified in the returned form,
port 2811:
$fp = fsockopen ($addr, 2811);

If connection was successful, send the user-requested test name to the BIST module,
all uppercase:
fputs ($fp, strtoupper($test).".");

Receive the test result from the BIST module, maximum 128 characters; append to the
result string as we receive, until the transmission end character (“.”) is met; the “.” (dot)
operator is string concatenation in PHP (which is, coincidentally, the same as the
end-of-transmission character we chose):
$recvd = fgets ($fp,128);
while (!preg_match("/(\.)/",$recvd))

{ $recvd = $recvd . fgets ($fp,128); }

Put the received result into the generated web page:
echo "<p><big>$recvd</big></p>";

Close the connection to the BIST module:
fclose ($fp);

Here are the results of the “availspace c:” test:

Test results
BIST module address: 127.0.0.1
Requested test: availspace c:
Opening connection to BIST module...done.
Sending test command "availspace c:"...done.
Reading response from BIST module...done.

Available space :1,188,384Kb.

Closing connection to BIST module...done.

5 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

3. CONCLUSIONS

In this paper, we presented a DBIST architecture that uses PHP scripts to let the user
select the tests, transmit the selections to the BIST modules and give the test results
back to the user. A simple example has been detailed to illustrate the concept.

PHP offers high flexibility, and rapid development, since all that is required from the
BIST modules is TCP/IP and ASCII-based communication. Furthermore, PHP is very
similar to C, so the learning curve for senior developers is fast, offering a convenient
way for Web-enabled DBIST management. The possibilities are wide.

On the other hand, since PHP is an interpreted language, it is slower than native,
compiled/linked binaries. But the speed overhead is not in the scripts, but in the BIST
modules themselves; however, even these BIST routines are rarely called, compared to
the normal functioning of the device. Another limitation may be the need for a web
server, although tiny embedded web servers are becoming a one- or two-chip
commercial product.

Security has nott been implemented, a future development must is to authenticate the
user.

4. REFERENCES

1. L.Miclea, Enyedi Sz., R. Orghidan, (2001), “On-line BIST Experiments for
Distributed Systems”, IEEE European Test Workshop ETW'2001, Stockholm,
Sweden, May 29th–June 1st, , pp. 37-39.

2. L. Miclea, Enyedi Sz., H. Vălean, (2000), “Remote Data Acquisition and Control
Using Programmable Structures”, Proceedings of International Conference on
Quality, Automation and Robotics Q&A-R 2000, Cluj- Napoca, Romania, 19th–
20th May, 2000, Tome 2, pp. 425-430.

3. Monica Lobetti Bodoni, A. Benso, S. Chiusano, G. di Natale, P. Prinetto, (2000),
“An Effective Distributed BIST Architecture for RAMs”, Informal Digest of IEEE
European Test Workshop ETW 2000, pp. 201-206

4. R. Pendurkar, A. Chatterjee, Y. Zorian, (1996), “A Distributed BIST Technique for
Diagnosis of MCM Interconnections”, International Test Conference 1996
Proceedings, pp. 214-221

5. Y. Zorian, H. Bederr, (1996), “Designing Self-Testable Multi-Chip Modules”,
European Design and Test Conference 1996 Proceedings, pp. 181-185

6. ***, “PHP Manual”, (2002), http://www.php.net/docs.php

6 of 6

http://www.php.net/docs.php

	INTRODUCTION
	Generalities
	DBIST
	PHP
	Generalities
	Example 1
	Example 2
	Combining DBIST with PHP

	IMPLEMENTATION AND EXPERIMENTS
	The experimental BIST module
	The script

	CONCLUSIONS
	REFERENCES

