A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics
May 23 — 25, 2002, Cluj-Napoca, Romania

SOFTWARE QUALITY

Silviu FRANTESCU, Emil VOISAN, Ovidiu DOBREANU, Cosmin CORNEA,
Gabriel FAUR, Tudor PERENI

Department of Automation and Industrial Information
Faculty of Automatics and Computer Sciences
“Politehnica” University of Timisoara
Bd. V. Parvan, no. 2, 1900, Timisoara, Romania
Tel.: 40-56-204333
Fax: 40-56-192-049
Email: sfrantescu@computervoice.ro, evoisan@aut.utt.ro, odobrean@aut.utt.ro,
ccornea@aut.utt.ro, fgl454@aut.utt.ro, tudor.pereni@alcatel. fr

Abstract: In the recent years software development has become more and more of a bottleneck due
the pressure to decrease product development time while increasing the quality and functionality for
the software is expected. In this article we’ll take a look at why the issue of software quality should

be the primary thought whenever you’re programming, as well as discussing some methods for
building high-quality software systems.

Keywords: software, quality, errors.

1. INTRODUCTION

The software problems especially their quality aspects were discussed before [1], [2]
and will be more. This article is just trying to remind the software developers the main
problems that can appear in a software development process and the possible causes.

Software quality can be defined as the conformance to explicitly stated, functional and
performance requirements, explicitly documented development standards, and implicit
characteristics that are expected of all professionally developed software. However, quality
is a subjective term because it depends on who the customer is. A wide-angle view of the
possible customers of a software development project might include end-users,
stockholders, future software maintenance engineers, government departments, etc. Each
type of customer will have their own opinion about quality — the end-user might define
quality as user-friendly and bug-free, while an accountant might define quality in terms of
profits.

Most programmers are superficial about controlling the quality of the software they
write. They write some code, run it through an ad hoc test, and if it seems ok, they are
done. Or, they use some code developed by someone else, and assume the code is in good
condition and can be used, without further modifications and tests. What are the results of

Page 1 of 6



A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics
May 23 — 25, 2002, Cluj-Napoca, Romania

such activity? On June 4 1996 the first flight of the European Space Agency's new Ariane
5 rocket failed shortly (in 4 sec.) after launching, resulting in an estimated uninsured loss
of a half billion dollars. It was reportedly due to the lack of exception handling of a
floating-point error in a conversion from a 64-bit integer to a 16-bit signed integer. And
there are dozens of such examples.

Some organizations have coding 'standards' that all developers are supposed to adhere
to, but everyone has different ideas and a general accepted standardization wasn’t achieved
yet. There are also various theories and metrics, such as McCabe Complexity metrics. Also
an excessive use of standards and rules can decrease productivity and creativity.

2. SOFTWARE QUALITY ASSURANCE (SQA)

SQA involves the entire development process. It monitors and improves the process,
verifying that the set of agreed-upon standards and procedures is followed, and ensuring
that the problems are found and dealt with. With other words, it is oriented on prevention.
The overall goal of SQA is to minimize the cost of fixing problems by detecting the errors
early in the development cycle.

Let’s look at some stages of structured software development. No matter what software
development cycle we will follow, we always have to interact with requirement analysis,
system specifications, system design, code implementation, testing and maintenance. So
these stages are somehow universally applicable. For small projects some of those stages
are not strongly required, however the designer will benefit by knowing and using them
and educating himself to the most important aspects of the development stages.

2.1 Requirements Analysis

- The system requested by the customer should be feasible.

- The requirements specified by the customer should satisfy his real needs, thus
recognizing requirements that are mutually incompatible, inconsistent,
ambiguous, or unnecessary.

- Give the customer an idea about how the software system will be build in order
to address the requirements.

- Avoid misunderstandings between the developers and the customer, which can
lead to further problems.

2.2 Specifications

- The specifications should be consistent with the requirements.

- The specifications should cover system’s flexibility, maintainability and
performance.

- A testing strategy should be established.

- A realistic development schedule should be established, including periodical
reviews

- A formal change procedure should be created for the system. Uncontrolled
changes, resulting in many versions of the system, will contribute to quality
degradation.

Page 2 of 6



A&QT-R 2002 (THETA 13)

2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23 — 25, 2002, Cluj-Napoca, Romania

2.3 Design

The changes made to the system’s design should be properly controlled and
documented.

The coding process should not start until de system design components are
approved according to requirements.

The design reviews should proceed as scheduled.

2.4 Coding

The code should follow the established standards of style, structure, and
documentation. Even though some programming languages (C/C++) lets us be
very compact, and super-obscure in coding, we should bear in mind that we or
others may have to work with that code again some day. Clarity of code is
preferred over conciseness.

The code should be properly tested and integrated, and the revisions made are
properly identified.

The code writing should follow the schedule. The customer should be informed
of the delays, and to know about the impact on the delivery time.

The code reviews should be made on schedule.

2.5 Testing

Testing plans should be created and followed. This includes a library of test
data, driver programs to run through the test data, and documentation of the
results of each formal test that has been performed.

The test plans created should address all of the system specifications.

After testing and reworking, the software should “perform” according to the
specifications.

2.6 Maintenance

The code and the documentation should be consistent. We tend not to update the
documentation when we change the program. Such an oversight can create
nightmares the next time someone will have to make a change.

The changes made in the code should follow the coding standard, and do not
deteriorate the overall code structure.

A configuration control should be observed, in order to integrate the changes
into the production version.

At this point we can formulate a few important ideas. First a product has to be built
considering the quality as the primary objective. There is no point in testing a product to
check if it fits the quality standards or not, if that product was not designed/built following
some quality standards. Second, the quality related issues should be managed by persons
outside the project development core. Both, the developers and the customers should be
concerned about the quality assurance of the product, in this way both being involved in
the development process, to a certain degree, and sharing also some responsibilities in
order to obtain a product according to the specifications and following the agreed-upon

standards.

Page 3 of 6



A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics
May 23 — 25, 2002, Cluj-Napoca, Romania

3. SOFTWARE QUALITY AND THE HUMAN FACTOR

There are two ways to obtain software free of errors. The first one is to prevent the
introduction of errors. The second is to identify the bugs, which are more or less hidden in
the code, and eliminate them. Obviously, the first method is superior.

If the specifications are lousy, and consequently, the design poor, the programmer will
have a difficult job understanding and implementing what the customer wants. The errors
are more likely to appear in the coding part of the development process.

A particular classification of coding errors is to classify them into syntax errors and
logical errors. The syntax errors are as easy to catch, as common they are. They depend on
the programming language used, however on the industry there are two main types of
programming languages used: assembly-level programming and high-level language
programming.

Assembly-level programming is preferred for real-time systems, due to a faster
execution and less memory requirements. On the other hand, assembly-level languages are
hard to maintain. There are a huge number of instructions required to perform a given
operation for a specific processor.

Considering the high-level languages, they are far easier to work with. A high-level
programming language comes closer to the human language. They translate the written
high-level code into an assembly-level sequence of code, using a compiler. The drawback
is that the software created by a high-level language runs slower and requires more
computing resources. One thing worth mentioning is that the compiler has error detection
capability. This means that logic, syntax and other coding errors can be detected and
corrected before an attempt is made to load and run the program.

Such error detection capability implemented into the compilers was necessary in order
to compensate the human failures. For a given operation these failures depend on a large
number of factors. This factors can be grouped under three main categories: intrinsic,
environmental and stress.

These categories will be detailed as follows.

3.1. Intrinsic Factors
These factors covers the basic characteristics of individuals, in our case all persons
involved in the development of a software project:
- Motivation: such person should have a proper motivation for a specific job.
- Physical ability: such person should be physically capable to perform the
operation.
- Mental ability: a person should have the basic intelligence required to perform
the operation.
- Temperament: a person should remain calm under stress.
- Concentration: a person should be capable to focus on the job.
- Speed of response: a person should be quick enough to respond in an emergency
situation.
- Knowledge: a person should possess sufficient knowledge in order to carry out
the operation correctly.

Page 4 of 6



A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics
May 23 — 25, 2002, Cluj-Napoca, Romania

The persons directly involved in the development process should be selected based on
the characteristics required by the project. The selected persons should attend a course of
training that will give them the technical knowledge and experience necessary to provide
good quality software.

3.2. Environmental factors

The working environment has a big influence on the persons involved in the project
development, in particular the software developers. The environmental influences can be
physical, organizational, and personal. Physical factors include temperature, humidity, and
noise level. Organizational factors include relationships with colleagues, relationships with
the project managers, job satisfaction, salary, job security, promotion prospects, vacations.
Personal factors as hunger, thirst, tiredness, physical and mental health, home life. Such
factors are in tight relation with the organizational factors.

3.3. Stress factors

The quality of software produced by developers depends on their stress level. Figure 1
shows the relation between human error rate and stress level. It can be seen that there is an
optimum stress level at which the error rate is minim. If the person is either bored or
overexcited, the error rate increases.

A

Error rate

>

Bored Optimum Overexcited Stress level

Figure 1. Error variation with the stress level

Error rate increases significantly due to several factors: the development’s schedule is

not followed, the customer too often changes project requirements, an unrealistic evaluation
of project’s requirements.
In 1988 a Russian satellite was lost on its way to Mars. Why? According to Science
magazine, “not long after the launch, a ground controller omitted a single letter in a series
of digital commands sent to the spacecraft. And by malignant bad luck, that omission
caused the code to be mistranslated in such a way as to trigger the test sequence". And
Phobos was never recovered. Human error it is a fact of life. People are not precision
machinery designed for accuracy. The natural tendency to interpret partial information can
cause operators to misinterpret system behavior in such a plausible way that the
misinterpretation can be difficult to discover.

Page 5 of 6



A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics
May 23 — 25, 2002, Cluj-Napoca, Romania

4. CONCLUSIONS

Current-generation software of medium to high complexity has to meet quality
requirements along with other specific characteristics. Those characteristics include, for
example, safety, reliability, reusability, predictability, portability, and the like.
Characteristics are an important (if not essential) component of user requirements. Oddly
enough, however, characteristics are often insufficiently defined, implemented, or verified,
thereby presenting a serious threat to project success.

Because of the large use and reliance on software systems today, there is a great need
for effective quality assurance alternatives and related techniques. According to the
different sources of errors, they can be classified into two categories: error prevention and
error reduction. Existing software quality literature generally covers error reduction
techniques such as testing and inspection in more details than error prevention activities, so
before anything the most important course in a project development is to prevent errors not
to reduce them. In order to acquire this objective it is required to follow a model in
software development: in early stages in order to obtain the specifications and prototypes
correctly it could be used the rapid prototyping, once the specifications are known the
development can proceed using the waterfall model (Figure 2):

Rapid Prototyping Waterfall Model
I N e , " Req. Change |
Rapid Prototy pe 1 Req. Chang; Requirements |—.I

. Verify
Veri fy L] ™ Diesign

Deesign I
I_ erify Verify .
Verih Implementati Implementation
mplementation [
Test

o il

Operations

Operations

Retire ment

Retire ment

Figure 2. Software development models

5. BIBLIOGRAPHY

1. Bentley, John, [1999] Introduction to Reliability and Quality Engineering,
Addison-Wesley Longman.

2. Pressman, Roger S., [1987] Software Engineering: A Practitioner’s Approach, 2nd

Edition, McGraw-Hill.

Anderson, Kenneth M. [2001] Foundations of Software Engineering.

Stoicu-Tivadar, Vasile Software Engineering for Process Control.

5. Waldrop, [1989] M. M. Phobos at Mars: A dramatic view -- and then failure.
Science

P w

Page 6 of 6



	“Politehnica” University of Timisoara
	INTRODUCTION
	Figure 1. Error variation with the stress level



