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Abstract

State space decompositions are a fundamental tool in control system the-
ory. The classical notion of state appears in connection with the usual dif-
ferential system, where the state space is the same at every moment, simply
because this system is time-invariant. Generalizations of this concept to ab-
stract time-varying systems were develloped in [1], [2]. In this paper we apply
this gemeral theory to some particular cases and we present a new example of
a system whose minimal state space decomposition is necessarly time-varying

Key words: Time-varying state space, controllability, observability, causality.

I. General results

1.Introduction

Let L?(0,1) be the usual Hilbert space of square-integrable signals on [0, 1], let A €
M,, Be M, ;, C € My, be real matrices and let D : L?(0,1) — L?(0,1), Du=y
be the usual differential system, i.e. z'(t) = Az(t) + Bu(t),z(0) = 0, y(t) = Cz(t).
The state space of the system is R", the state of the system at every moment ¢ € [0, 1]
is the vector x(t). Further, classical system theory developed tests of controllability
and observability in terms of the matrices A, B,C. In the following, we develop a
general state space decomposition theory for an arbitrary system on a Hilbert space
and generalize the usual observability and controlability tests for the differential
system. An important property of this theory is the fact that the state space is
time-varying, i.e the state space has different dimensions at different moments. In
the second part, we apply these general results to two particular systems. One of
them is a new example of a system which doesn’t have a minimal time-invariant
state decomposition.

Let H be a Hilbert space and let 7 be a totally ordered set with #, and ., the
minimum and maximum elements, respectively. A family P = (P;);e7 of orthogonal
projections on H is called resolution if:
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(a) P < Py, Vt <s.

(b) P, =0, P =1.

(c) If P, tends strongly to P, then P € P.

The pair (H,P) is called a Hilbert resolution space. If /*(N) is the Hilbert space of
square integrable discrete signals, then the time set 7 = N U oo and the projections
are (Pyz)(n) = z(n), Vn < k and (Pyz)(n) = 0, Vn > k, Vo € (*(N),Vk € N. If
H = L*(0,1), then the time set is 7 = [0, 1] and the projections are

(Pau)(s) = u(s),Vs < t and (Pu)(s) = 0,Vs > t, Vu € L*(0,1), Vt € [0,1].

Let £(H) be the Banach algebra of all linear bounded systems on H and let T €
L(H). The system T is called causal if BT = PTP,, Vt € T, or, equivalently all
the subspaces ker(P;) are invariant for 7.

We now give the definition of the main concept.

A state decomposition for the system T' € L(H) is defined by a a family

(K4, oy, B )ieT, such that:

(d) K; is a Hilbert space, Vt € 7.

(e) ay : H — K, is a bounded linear system such that oy = o P, Vt € T .

(f) B; : Ky — H is bounded linear system such that 8, = (I — B,)3;, Vt € T.

(g) (I — B)TP, = oy, YVt €T.

Two state decompositions (Ky, ay, §;) and (K]}, «}, 8;) are said to be equivalent if
there is a family of bounded invertible operators A; : K; — K| such that o} = Aoy

and (3, = B, AL, Yt € T. For details see [1],[3],[4],[5],[6].

2.Definitions
A state decomposition (K, oy, 5;)ier is called controllable if
Vt e T,V € KiVe > 0,30, > 0 and u € H such that || aqu — z [|< €.
The state decomposition is called observable if
Vt € T, Im > 0 such that || Bz ||>m || z ||, Vo € K.
The state decomposition is called minimal if it is controllable and observable.

3.Proposition
Let (H,P) be a Hilbert resolution space and let T € L(H). Then T admits a
minimal state decomposition.
Proof For every t € 7 we define the equivalence on P;(H) by

r~y<e (I —P)TPx= (I —-P)TPy.

The set of classes of equivalence, denoted by S; can be organized as an inner space
with the operations: & 4 § = # + y, A& = Az, and the inner product:

<z,y>=< (I —-P)TPx,(I — P)TPy>,V&,y €S, VA eC.

Let K; be the closure of S;. The maps «a; and (; are defined as follows: a;u = EZ
and i@ = (I — B,)T P, ¥t € T. Checking that (K, ay, B;)ier is standard, ([1]).

The unicity of the minimal state decomposition is given by the following result
(for details see [1],[2]).

4.Proposition
Every two minimal state decompositions of the same system are equivalent.
Proof Let T € L(H) be a system and let (K, oy, 5;) and (K[, o), 5, be two state
space decompositions associated to 7. We define A, : K; — K] on the range of oy
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(which is dense in K;). Let w € H and let = ayu € ay(H). The operators A, are
defined by Az = aju. If x = ayu = oy, then

;OCQ’U/ = ([ — Pt)TPtu = ﬂtoztu = 6150615'1) = (I — B)TP{U = ﬂ;OK;'U,

hence aju = ajv, since ] is one to one. It results that the operators A; are well
defined. The relations A;a; = o and B, A; = §; are obvious. We have to prove that
the operators A; are bounded and invertible. Letx = ayu,u € Hand let m > 0 such
that || Ay = m ||y .y € K. Then:

g

il a,

1 1
| A ll< - ) BAw = L |l B < !
m m

hence A; is bounded. Analogously:
m

e

hence A; is bounded above and below and has dense range; it results that A; is
invertible ([7]).

I Az [|=

[

5. Observation
It can be proved ([1],[2]) that for a family (K, a4, B;)ier satisfying conditions d,e,f of
the Introduction and it is minimal (in the sense of definition 2) there is (but it is not
unique) a causal system whose the above family is a minimal state decomposition.

The above setup allows a general test for controllability and observability which
generalizes the classical test for the differential system.

6.Theorem
Let (H,P)ier be a Hilbert resolution space, let T' € L(H) and let (K;, ay, 3;) be a
state decomposition for T'.
(a) The decomposition is controllable if and only if oy > 0,Vt € 7.
(b) The decomposition is observable if and only if 575, > 0,Vt € 7.
Proof (a) If the state decomposition is controllable, then, by definition, it results
that the operators a; have dense range. It results ([7], prop.29,ch.3) that the oper-
ators a; are one to one; it results that Vu € H:

< apatu,u >=| aju ||*> 0.

Conversely, if ayay > 0, then the operators o are one to one, hence, by the same
argument, the operators o; have dense range. Analogously, one can prove (b).

I1. Applications
We now apply the general results of the first section to some particular systems.

7.The discrete system
Let A€ M,,, B€ M, 1, C € My,; The discrete system Z : (>(N) — (*(N), Zu =
y, where y(k) = Cxz(k),Vk € N and = : N — R" is the solution of the recurence
x(k+1) = Az(k) + Bu(k),z(0) = 0.
We shall define a state decomposition and we shall get a test of controllability and
observability for this system as an application of the general test from theorem 6,
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(for details see [3],[4]).
Let us first observe that

k=1
y(k) = Cx(k)=C> A'Bu(k—1—j),Vk > 1.
=0

Let 7 = N Uoo be the time set and let P, be the truncation operators (P,u)(k) =
u(k), Yk < m and (P,u)(k) = 0, Yk > m. For every m € N we define the state
space K,, = R™. It results that the state space decomposition is time-invariant,
since the state space is the same at every moment, m € N. We now define the maps
« and [ as follows.

Let k € N and let

k-1
o P(N) — R", apu = z(k) = > A'Bu(k — 1 — j),
7=0
. . CAT™F~y >k
e ). ) = Y2

We now prove that this is a state space decomposition, i.e properties d,e,f,g from
the Introduction.
Let k € N,u € (*(N) and v € R"; then:

k-1 k-1
apu =y ABu(k —1—j) =3 AB(P)ulk —1—j) = ar Py,

J=0 J=0

R R S S (Y SR )

Moreover, if j < k — 1, then:

(I = Px)2Pu)(j) = 0= (Brawu(j).

If y > k, then:

(Brawu)(5) = (Brr(k))(j) = CA (k) = CAT Z_: A" Bu(k —1—m) =

m=0

= Y CATF Bk — 1 —m) = (I — P)ZP) ().

It should be noticed that the above state decomposition is time-invariant since the
state space is the same at every moment: R". The reason is that the discrete system
Is time-invariant.

We now prove that the usual test of observability and controllability for this system
is a particular case of the general test from theorem 5:

(a) The above state decomposition is observable if and only if the matrix

(C; CA; CA?% .. CA”fl)T has the rank n.

(b) The state decomposition is controllable if and only if the matrix

(B; BA; BA?; ...; BA™!) has the rank n.
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We prove assertion (a). According to theorem 5, the state decomposition is observ-
able if and only if 3;3, > 0,Vk € N; we first compute the adjoint 3 : (2(N) — R™.
For every u € />(N) and v € R™ we get:

<u, By >= > u()(Bey) () = D u(j)CATFy =

j=20 Jzk

T
= | AT TRC () | v =< Do(ATYTRC u(g), y >,
Jj>k Jjzk

hence Gfu = Y5, (AT)7*CTu(j),Yu € 2(N).

It results that 5; By = (ZjZk(AT)j’kCTCAj’k> ~. Hence the state decomposition

CNT A
is observable if and only if the matrix 37, (C’AJ_’“) (C’A]_k) is positive, i.e.:

S (CATRy) (CATHY) > 0, ¥y € Ry #0.

i=k

It results that the decomposition is not observable iff there is a nonzero vector
v € R"™ such that CA™~y = 0,YVm € N, by applying the Hamilton-Caley the-
orem this is equivalent to CA™y = 0,Ym € {0,1,....,n — 1}, or, equivalently,
det (C; CA: CA2; ..., C A1) = 0.

8.A time-varying minimal state decomposition
In the previous example the state space was time-invariant, i.e. it was the same at
every moment. The general theory of the first section allows to define time-varying
minimal state decompositions. We now introduce a new example of system for which
a minimal state decomposition is necessarly time-varying.
Let H = (*(Z) and let {0, }nez be its usual orthonormal basis, i.e. 0,,(j) = d;,. For
every moment n € Z, let

K, =R =Lz 0 i1, 20,21, ., ) ; 7 € R}
be the state space at n and let

(7)) — RIH a0 = (u(=n), u(=n+ 1), ...,u(0), ..., u(n))

n

ﬁn : R2|n‘+1 = €2<Z): ﬁn(xfnv -y L0, >xn) = Z TrO2n4k+1-

k=—n

Relations o, P, = o, and (I — P,) 3, = (3, are direct consequences of the definition.
It results (Observation 5; for details see [2]) that (RZ™*! a8, )nez is indeed a
state decomposition for some system 7' on ¢?(Z) which must satisfy the equality:

(I — P,)TPu = Branu = By(u(—n),...,u(0),...,u(n)) =

n

= Z U(k)02n+k+1, Yu € XQ(Z)

k=—n

Moreover, the decomposition is a time-varying state decomposition, since the state
space is changing at every moment n: R, R3, R, ...
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We now prove that this state space decomposition is minimal.
Ifn € Z xe Ry e (2(Z), then:

n

<zopu>= > zpu(k) =Y (anz)(k)u(k),

k=—n keZ

where afx = Y20 X0y

It results o, = I > 0, hence, by applying theorem 6 it results that the decompo-
sition is controllable.

Let n € Z,u € (*(Z),x € R"*!; then:

< u, fBpr >= Z u(k)(Bux)(k) =

keZ

=u(n+z_p +un+2)z_pi1 + ... +u@Bn+ )z, = > xp(Bru)(k),
k=—n
where Bfu = (u(n +1),u(n+2),...,u(3n +1)).
Since 353, = I > 0, it results, by applying again theorem 6, that the state decom-
position is observable, too, hence it is minimal. Obviously, there is no time-invariant
minimal state space decomposition for such a system.

I1I. Conclusions
Time-invariant state space decompositions are useful only in the study of time-
invariant systems. In order to define minimal state space decompositions for time-
variant systems, the above general theory is a necessary tool, which can be applied
to a large variety of systems, as the two previous examples show.
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