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Abstract

State space decompositions are a fundamental tool in control system the-
ory. The classical notion of state appears in connection with the usual dif-
ferential system, where the state space is the same at every moment, simply
because this system is time-invariant. Generalizations of this concept to ab-
stract time-varying systems were develloped in [1], [2]. In this paper we apply
this general theory to some particular cases and we present a new example of
a system whose minimal state space decomposition is necessarly time-varying

Key words: Time-varying state space, controllability, observability, causality.

I. General results

1.Introduction
Let L2(0, 1) be the usual Hilbert space of square-integrable signals on [0, 1], let A ∈
Mn, B ∈Mn,1, C ∈M1,n be real matrices and let D : L2(0, 1) 7→ L2(0, 1), Du = y
be the usual differential system, i.e. x′(t) = Ax(t) + Bu(t), x(0) = 0, y(t) = Cx(t).
The state space of the system is Rn, the state of the system at every moment t ∈ [0, 1]
is the vector x(t). Further, classical system theory developed tests of controllability
and observability in terms of the matrices A, B, C. In the following, we develop a
general state space decomposition theory for an arbitrary system on a Hilbert space
and generalize the usual observability and controlability tests for the differential
system. An important property of this theory is the fact that the state space is
time-varying, i.e the state space has different dimensions at different moments. In
the second part, we apply these general results to two particular systems. One of
them is a new example of a system which doesn’t have a minimal time-invariant
state decomposition.
Let H be a Hilbert space and let T be a totally ordered set with t0 and t∞ the
minimum and maximum elements, respectively. A family P = (Pt)t∈T of orthogonal
projections on H is called resolution if:
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(a) Pt ≤ Ps,∀t ≤ s.
(b) Pt0 = 0, Pt∞ = I.
(c) If Ptn tends strongly to P , then P ∈ P .
The pair (H,P) is called a Hilbert resolution space. If `2(N) is the Hilbert space of
square integrable discrete signals, then the time set T = N ∪∞ and the projections
are (Pkx)(n) = x(n), ∀n ≤ k and (Pkx)(n) = 0, ∀n > k, ∀x ∈ `2(N), ∀k ∈ N . If
H = L2(0, 1), then the time set is T = [0, 1] and the projections are
(Ptu)(s) = u(s),∀s ≤ t and (Ptu)(s) = 0,∀s > t, ∀u ∈ L2(0, 1), ∀t ∈ [0, 1].
Let L(H) be the Banach algebra of all linear bounded systems on H and let T ∈
L(H). The system T is called causal if PtT = PtTPt, ∀t ∈ T , or, equivalently all
the subspaces ker(Pt) are invariant for T .
We now give the definition of the main concept.
A state decomposition for the system T ∈ L(H) is defined by a a family
(Kt, αt, βt)t∈T , such that:
(d) Kt is a Hilbert space, ∀t ∈ T .
(e) αt : H 7→ Kt is a bounded linear system such that αt = αtPt, ∀t ∈ T .
(f) βt : Kt 7→ H is bounded linear system such that βt = (I − Pt)βt, ∀t ∈ T .
(g) (I − Pt)TPt = βtαt, ∀t ∈ T .
Two state decompositions (Kt, αt, βt) and (K ′

t, α
′
t, β

′
t) are said to be equivalent if

there is a family of bounded invertible operators At : Kt 7→ K ′
t such that α′t = Atαt

and β′t = βtA
−1
t , ∀t ∈ T . For details see [1],[3],[4],[5],[6].

2.Definitions
A state decomposition (Kt, αt, βt)t∈T is called controllable if
∀t ∈ T , ∀x ∈ Kt∀ε > 0,∃δε > 0 and u ∈ H such that ‖ αtu− x ‖< ε.
The state decomposition is called observable if
∀t ∈ T , ∃m > 0 such that ‖ βtx ‖≥ m ‖ x ‖,∀x ∈ Kt.
The state decomposition is called minimal if it is controllable and observable.

3.Proposition
Let (H,P) be a Hilbert resolution space and let T ∈ L(H). Then T admits a
minimal state decomposition.
Proof For every t ∈ T we define the equivalence on Pt(H) by

x ∼ y ⇔ (I − Pt)TPtx = (I − Pt)TPty.

The set of classes of equivalence, denoted by St can be organized as an inner space
with the operations: x̂ + ŷ = ̂x + y, λx̂ = λ̂x, and the inner product:

< x̂, ŷ >=< (I − Pt)TPtx, (I − Pt)TPty >, ∀x̂, ŷ ∈ St, ∀λ ∈ C.

Let Kt be the closure of St. The maps αt and βt are defined as follows: αtu = P̂tu
and βtx̂ = (I − Pt)TPtx, ∀t ∈ T . Checking that (Kt, αt, βt)t∈T is standard, ([1]).

The unicity of the minimal state decomposition is given by the following result
(for details see [1],[2]).

4.Proposition
Every two minimal state decompositions of the same system are equivalent.
Proof Let T ∈ L(H) be a system and let (Kt, αt, βt) and (K ′

t, α
′
t, β

′
t be two state

space decompositions associated to T . We define At : Kt 7→ K ′
t on the range of αt
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(which is dense in Kt). Let u ∈ H and let x = αtu ∈ αt(H). The operators At are
defined by Atx = α′tu. If x = αtu = αtv, then

β′tα
′
tu = (I − Pt)TPtu = βtαtu = βtαtv = (I − Pt)TPtv = β′tα

′
tv,

hence α′tu = α′tv, since β′t is one to one. It results that the operators At are well
defined. The relations Atαt = α′t and β′tAt = βt are obvious. We have to prove that
the operators At are bounded and invertible. Letx = αtu, u ∈ Hand let m > 0 such
that ‖ βty ‖≥ m ‖ y ‖, y ∈ K ′

t. Then:

‖ Atx ‖≤
1

m
‖ β′tAtx ‖=

1

m
‖ βtx ‖≤

‖ βt ‖
m

‖ x ‖,

hence At is bounded. Analogously:

‖ Atx ‖≥
m

‖ β′t
‖ x ‖,

hence At is bounded above and below and has dense range; it results that At is
invertible ([7]).

5. Observation
It can be proved ([1],[2]) that for a family (Kt, αt, βt)t∈T satisfying conditions d,e,f of
the Introduction and it is minimal (in the sense of definition 2) there is (but it is not
unique) a causal system whose the above family is a minimal state decomposition.

The above setup allows a general test for controllability and observability which
generalizes the classical test for the differential system.

6.Theorem
Let (H,P)t∈T be a Hilbert resolution space, let T ∈ L(H) and let (Kt, αt, βt) be a
state decomposition for T .
(a) The decomposition is controllable if and only if αtα

?
t > 0,∀t ∈ T .

(b) The decomposition is observable if and only if β?
t βt > 0,∀t ∈ T .

Proof (a) If the state decomposition is controllable, then, by definition, it results
that the operators αt have dense range. It results ([7], prop.29,ch.3) that the oper-
ators α?

t are one to one; it results that ∀u ∈ H:

< αtα
?
t u, u >=‖ α?

t u ‖2> 0.

Conversely, if αtα
?
t > 0, then the operators α?

t are one to one, hence, by the same
argument, the operators αt have dense range. Analogously, one can prove (b).

II. Applications
We now apply the general results of the first section to some particular systems.

7.The discrete system
Let A ∈ Mn, B ∈ Mn,1, C ∈ M1,n; The discrete system Z : `2(N) 7→ `2(N),Zu =
y, where y(k) = Cx(k),∀k ∈ N and x : N 7→ Rn is the solution of the recurence
x(k + 1) = Ax(k) + Bu(k), x(0) = 0.
We shall define a state decomposition and we shall get a test of controllability and
observability for this system as an application of the general test from theorem 6,
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(for details see [3],[4]).
Let us first observe that

y(k) = Cx(k) = C
k−1∑
j=0

AjBu(k − 1− j),∀k ≥ 1.

Let T = N ∪∞ be the time set and let Pm be the truncation operators (Pmu)(k) =
u(k), ∀k ≤ m and (Pmu)(k) = 0, ∀k > m. For every m ∈ N we define the state
space Km = Rn. It results that the state space decomposition is time-invariant,
since the state space is the same at every moment, m ∈ N . We now define the maps
α and β as follows.
Let k ∈ N and let

αk : `2(N) 7→ Rn, αku = x(k) =
k−1∑
j=0

AjBu(k − 1− j),

βk : Rn 7→ `2(N), (βkγ)(j) =

{
CAj−kγ , j ≥ k

0 , j ≤ k − 1

We now prove that this is a state space decomposition, i.e properties d,e,f,g from
the Introduction.
Let k ∈ N, u ∈ `2(N) and γ ∈ Rn; then:

αku =
k−1∑
j=0

AjBu(k − 1− j) =
k−1∑
j=0

AjB(Pk)u(k − 1− j) = αkPku,

(βkγ)(j) =

{
CAj−kγ , j ≥ k

0 , j ≤ k − 1
= ((I − Pk)βkγ)(j).

Moreover, if j ≤ k − 1, then:

((I − Pk)ZPku)(j) = 0 = (βkαku(j).

If j ≥ k, then:

(βkαku)(j) = (βkx(k))(j) = CAj−kx(k) = CAj−k
k−1∑
m=0

AmBu(k − 1−m) =

=
k−1∑
m=0

CAj−k+mBu(k − 1−m) = ((I − Pk)ZPku)(j).

It should be noticed that the above state decomposition is time-invariant since the
state space is the same at every moment: Rn. The reason is that the discrete system
is time-invariant.
We now prove that the usual test of observability and controllability for this system
is a particular case of the general test from theorem 5:
(a) The above state decomposition is observable if and only if the matrix

(C; CA; CA2; ...; CAn−1)
T

has the rank n.
(b) The state decomposition is controllable if and only if the matrix
(B; BA; BA2; ...; BAn−1) has the rank n.
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We prove assertion (a). According to theorem 5, the state decomposition is observ-
able if and only if β?

kβk > 0,∀k ∈ N ; we first compute the adjoint β?
k : `2(N) 7→ Rn.

For every u ∈ `2(N) and γ ∈ Rn we get:

< u, βkγ >=
∑
j≥0

u(j)(βkγ)(j) =
∑
j≥k

u(j)CAj−kγ =

=

∑
j≥k

(AT )j−kCT u(j)

T

γ =<
∑
j≥k

(AT )j−kCT u(j), γ >,

hence β?
ku =

∑
j≥k(A

T )j−kCT u(j),∀u ∈ `2(N).

It results that β?
kβkγ =

(∑
j≥k(A

T )j−kCT CAj−k
)
γ. Hence the state decomposition

is observable if and only if the matrix
∑

j≥k

(
CAj−k

)T (
CAj−k

)
is positive, i.e.:

∑
j≥k

(
CAj−kγ

)T (
CAj−kγ

)
> 0, ∀γ ∈ Rn, γ 6= 0.

It results that the decomposition is not observable iff there is a nonzero vector
γ ∈ Rn such that CAmγ = 0,∀m ∈ N ; by applying the Hamilton-Caley the-
orem this is equivalent to CAmγ = 0,∀m ∈ {0, 1, ..., n − 1}, or, equivalently,

det (C; CA; CA2; ...; CAn−1)
T

= 0.

8.A time-varying minimal state decomposition
In the previous example the state space was time-invariant, i.e. it was the same at
every moment. The general theory of the first section allows to define time-varying
minimal state decompositions. We now introduce a new example of system for which
a minimal state decomposition is necessarly time-varying.
Let H = `2(Z) and let {σn}n∈Z be its usual orthonormal basis, i.e. σn(j) = δjn. For
every moment n ∈ Z, let

Kn = R2|n|+1 = {(x−n, x−n+1, ..., x0, x1, ..., xn) ; xj ∈ R}

be the state space at n and let

αn : `2(Z) 7→ R2|n|+1, αnu = (u(−n), u(−n + 1), ..., u(0), ..., u(n))

βn : R2|n|+1 7→ `2(Z), βn(x−n, ..., x0, ..., xn) =
n∑

k=−n

xkσ2n+k+1.

Relations αnPn = αn and (I −Pn)βn = βn are direct consequences of the definition.
It results (Observation 5; for details see [2]) that (R2|n|+1, αn, βn)n∈Z is indeed a
state decomposition for some system T on `2(Z) which must satisfy the equality:

(I − Pn)TPnu = βnαnu = βn(u(−n), ..., u(0), ..., u(n)) =

=
n∑

k=−n

u(k)σ2n+k+1, ∀u ∈ `2(Z).

Moreover, the decomposition is a time-varying state decomposition, since the state
space is changing at every moment n: R,R3, R5, ...
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We now prove that this state space decomposition is minimal.
If n ∈ Z, x ∈ R2|n|+1, u ∈ `2(Z), then:

< x, αnu >=
n∑

k=−n

xku(k) =
∑
k∈Z

(α?
nx)(k)u(k),

where α?
nx =

∑n
k=−n xkσk.

It results αnα
?
n = I > 0, hence, by applying theorem 6 it results that the decompo-

sition is controllable.
Let n ∈ Z, u ∈ `2(Z), x ∈ R|n|+1; then:

< u, βnx >=
∑
k∈Z

u(k)(βnx)(k) =

= u(n + 1)x−n + u(n + 2)x−n+1 + ... + u(3n + 1)xn =
n∑

k=−n

xk(β
?
nu)(k),

where β?
nu = (u(n + 1), u(n + 2), ..., u(3n + 1)).

Since β?
nβn = I > 0, it results, by applying again theorem 6, that the state decom-

position is observable, too, hence it is minimal. Obviously, there is no time-invariant
minimal state space decomposition for such a system.

III. Conclusions
Time-invariant state space decompositions are useful only in the study of time-
invariant systems. In order to define minimal state space decompositions for time-
variant systems, the above general theory is a necessary tool, which can be applied
to a large variety of systems, as the two previous examples show.

REFERENCES
1. A.Feintuch, R.Saeks: ”System Theory: A Hilbert space approach”, Academic
Press, (1982).
2. A. Feintuch: ”State Space Theory for Resolution Space Operators”,
J. Math.An.Appl.,74, 164-191,(1980).
3. V. Ionescu, A. Varga: Teoria Sistemelor, Ed. ALL, (1994).
4. M.Olteanu: ”Discrete Time-Invariant Infinite-dimensional systems”, Proceedings
of 11-th Int. Conf. on Control Systems and Computer Science, vol.1,p.52, (1997).
5. M.Olteanu: ”Abstract Time-Invariant Infinite-dimensional Systems”, Proceed-
ings of IFAC Conf.”Linear Time Delay Systems”,p.31, Grenoble, july 6-7, (1998).
6. M. Olteanu: ”A general time-frequency method for the representation of time-
invariant systems”, Proceedings of Quality, Automation and Robotics 2000, tome
2,p.95, Cluj Napoca, 19-20 May, (2000.
7. M. Olteanu: ”Curs de analiza functionala”, Ed. Printech, (2000).


