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Abstract: The algorithm of the dynamic control functions (IDM) achieves a complex study
regarding the behavior to whatever mechanical robot structure (MRS), with rigid or elastic links.
Beside the dynamic control functions, determined with various algorithms, the dynamic
functions of the operational variables can be also analyzed. On the basis of new formulations, in
this paper, the expressions for the kinetic energy, acceleration energy and generalized forces
answerable to MRS with flexible links will be presented. Using on the one hand Lagrange-Euler
(LE-type) equations, as well as Appell’s equations, and on the other hand the Hamilton-
Ostrogradski principle the generalized elastodynamics equations in Robotics will be analyzed.
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1. INTRODUCTION

The dynamics robot equations can be defined, in a simplified form, as below:
co=eol  aro=rtprmcmdtor aro=lorwizion] .
Above {ge(t);ﬁ; e(t);§ e(‘[)} and Q. °t) represent the column vectors typical of the

generalized variables, and generalized driving forces respectively from every driving
Link i / joint of the robot. The last is also called

the dynamics control function. The
mechanical robot structure (MRS) with
n d.o.f., considered as non-conservative
system, has been represented in Fig.1.
Unlike first equation from (1) that
expresses the direct dynamics model,
the second is called the inverse
dynamics model (IDM). The algorithm
of the dynamic control functions (IDM)
is included in SINMECROb Simulator
[2]. In this paper the dynamics
equations for rigid structures and then
the generalized elastodynamics
Fig. 1 equations for the robot with elastic
links will be determined.
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2. THE MATRIX DYNAMICS EQUATIONS IN ROBOTICS
In this section, according to [2] and [3], the kinetic and acceleration energy, as
well as the matrix dynamics equations for robots with rigid structure will be analyzed.
2.1 The Kinetic Energy. The Acceleration Energy
link i fi+1} In the following a kinetic link from
MRS is taken into study, in keeping with
Fig. 2. It contains infinity of elementary
\ mass dm continually distributed in the
whole volume of the kinetic link. The
kinetic energy for the mechanical robot
structure, havingn d.of., is determined

with the below expression:

EC(é?é) ZZZTr{ A Lpsi - 'm}ql G

i=1 j=lm=1
INIEETE
' EC(H;sz 12. )
Fig. 2 E'OXT My (5)0)7
In the kinetic energy a new dynamic matrix is also defined as the inertia matrix:
— i=1-n
M@ |=| M; =Matrix\M; =M: where i=1—>nand j=1—ny; 3
O[T b -y v -t -t ®

i—1
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n >
ZTrace{Aki losk - Akj} k=max(i:]) i k ©) !
k=max(i;j) A exp ZA -Q; 1 EXp ZAI e Teo
i=0 I=]

MX(Q_HJ(Q‘)‘T.M(§)°J(§)‘1:h<|6atgi;<{MXij where i=1—>6and j=1—6} . 4)

The inertia matrix (4) of the kinetic energy in the Cartesian state space is defined.

, It is known that, the dynamics equations
dm N M link i to whatever mechanical robot structure (MRS),

~\> K_%_’-;ﬂfi / can be expressed by extending the study about

- N the acceleration energy. In keeping with [3], and

1 2\ {——= [4], the new explicit and matrix expression of

\ /it i \ the acceleration energy to robot dynamics shows as:

—~ {|} : | _ZZMU -G q]+zzzvljm di q Um

i=1j=1 i=l j=1 m=1

1, n
+EZZZZDulm ql q] ql qm
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R i=l—n
B(@)= Vim =Vimj = ZTr[Aki'klpsk 'Aljm] j=l->n-1 |; (6)
| k=max (i;j;m) m=j+l—>n
D(«?;?):{é?{omm: S Tl g Al '=1=n ]5 i,zl_m}. (8)
k=max (i;j;l;m) m=1-n J=1-n

The above dynamic matrices are known as the matrix of the Coriolis termsB(¢) and

centrifugal termsC(@), while D(H_ 0 ) is a new pseudo inertia matrix. Their terms are also
expressed by means of the matrix exponentials below written:

i1 k
{exp{ZAj -q]}}Ai -{exp{ZA, -q }}Tk(g)~klpsk ~A1jm
n i=0 I=i
Vijm :k:max%;j;m)Tr m-1 j-1 k
Ayim ={9XP{ZA| ‘%H'Am : eXP{ZAi '%}Ai 'eXP{ZAp 'Qp} 'Tk(g)

1=0 i=m p=i

-1 i-1 k
{ex JZAi '%H-Aj '{EXP{ZAm 'qm}'Am 'eXF’l[ZAp 'qu‘Tlfg)'klpsk A
n =0 m=j =i
Dijim = ; Tr J p '
k=max (i;;I;m) m-1 4 K (0)
Ay =1 €X ZA| 'ql} A, -{ex ZAi .qi}Ai .EXD{ZAp .qp} 'TkO
1=0 i=m

;9

p=i

The acceleration energy in the Cartesian configuration space is defined by means of the new expression:
OXT My (0)°% KT {%(é)* .Oj(é)T}.MX (é).{%(a)%(é)-l}.%
Eu=s +°>?'T.MX(a).{Oj(a)OJ(a)—l}.Ox*_Ox*T.{Oa(é)-T.Oj(é)T}.Mx(é)Osa . (10)
(0T vy (5;5)-°§—°J(§)T Ny (é;5)-{°J(")°J(§)‘l}-°i+°? -Dx(é;é)-oi
2.2 The Dynamics Equations

On the basis of the above expressions, in keeping with [2] and [3], the column
vector of the generalized variables with respect to Cartesian state space is determined:

% 3(a)mla)* .{{ 0 l0)-8.0)[33) .6} |27 (5)_.°§X(§)}; (an

° )-_(.p (T) = [Oﬂdp(f) OC;Uanp(T)] T= Tpt—T '0)-_(-p71 + T_trp-l > )._(.p ,and °X(7)= (ET (r) w'(z) )T ;
p p

0— 0—
pr(r): (Tp-f)g ‘in—l +M‘in {ﬂ_%p_o ip}'@‘%—l%{ Yot %p in—l]‘(fp'r) ’

6 tp tp tp
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wherez, <M, t O)Tp cDGM Algorithm , and where p =1 — mrepresents the

p=Tp " Tp1s
number of the configurations taken into study, according to IKM Algorithm.

3. THE ELASTODYNAMICS EQUATIONS IN ROBOTICS

This section is devoted to define the generalized elastodynamics equations,
when the robot links are dominated of
flexibility properties. At first, a few
kinematic transformations are
described. In the aria of the small
deflections, and considering the aspects
from Fig.4, the time functions for the
angular and linear deformations of the
link (i) are written, according to [5], as:

5)( ij

"
igi = 5yi :{iqij } un yu >
§zi = é‘zu
r i m; . m Ui
'di =|vy ={Zqij(t)'ldij}=zqij(t)' v
Fig. 4 w, | U7 = W

The functions: g; (t) are time amplitude
of the proper modes j =1 —m,, and they are completing the generalized variablesq; (t)
The position vector for an elementary mass dm is: 'T2='f, +'d; ;°r® =p? +R% -(i f+'d )
The symbol (e) dignifies the elasticity of the kinetic link. After a few kinematic
transformations, the new locating matrix, between adjoining elastic links, shows as:

e e ee < {5]1 X} aij ee <
T =Ty AT =T8S +Ti 09 D> a5 =TS +Tia 2.0 - ATy ¢ (12)

=" 000 0 =

i-1 X d.
i% _HTJJ -1 T|| -1 _H T]] 1+TJJ—1 {quk |:{5 } dlk:|} 'Tii—l; (13)

i 000 O

i1 i1
Tid :HTjj—l'ATjek Tija =H T +T) 4 {Zq]k AT, } ii-1- (14)

The locating matrix T;;_; is answerable to rigid link, while AT“e to the small deformations.
About the above 1ocat1ng matrix is applied the time derivatives of first and second order as:

i—1 mg
. RE
Te =| o p';»_TU Gt S T ATE TE Gy T8 =| 10 .
i0 |:000 0_ i0 kzlko k* |k k kzlg kk-1 kI " Vil Tkl i0 000 0 ( )

The column vector of the generalized variables is completed with g (t) as below:

_ _ r () if = T
ee(t){eij“(t): eiTT(t):{Eij((tt))liijztl)i} j=0—>mi} i=1—>n} :

[ [9 (t)if j=0} g (1) if =1} j=0—>mi] i:1—>n:|T; (16)
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. T
Tl [ 0)=[57 0)= {6, 0t i =0} by Ot 21)) =0, i:1—>nJ .
3.1 The Kinetic and Acceleration Energy in Elastodynamics

In the following, considering that MRS is characterized through (n) flexible links,
the kinetic energy, which expresses the elastodynamics behavior [1], is defined as below:

. 1 L L . (T <eT 5T <eT i<T T .
Ec” 7 IinkTrace|:(Ti%’lri +Tio-'dj +Tig " ij’(lri T +'di Tig +'di T )]dm, (17)

ZE'ee(J ; jiT:j:1—>i)

e (7%= |

» The elastodynamics equations can be likewise determined by means of the Appell’s
equations. In the view of this, the acceleration energy answerable to a flexible link from
MRS is established with the new elastodynamics expression:

3

M

S me (e ) e ag (18)

j=0k=11=0

M:

_1
%_éeT.Mee(ge).ée 2I

'i

T r +Te 'd " il;_T .-l':_eT_i_ia_T .-I'-'_eT i
Efezé. ] kTrace i0” 0’ . IVLIO ) I.:IO .dm - (19)
2 A +2-Ti%-'di +Ti%-'di +2.d] -Ti%T+'diT -Ti%T
For the whole MRS, supposing that the (n) kinetic links are flexible the acceleration
energy in the new matrix expression is shown in the two variants below:

Eze(g 0 9 j %éeT.Mee(ée).ée+Vee(§e;§ej.§e+%.§ﬂ.Dee(ge;ée).ée; (20)
n m n mg .
%. >SS (a0 )8 -6+ 0% (p%:6¢ )0 }
e (ée;ée;ge ): i=1 j=0k=11=0 ; 21

. L n n n Mp n - -
where 49”-0“(9"‘;0"‘)-0"‘—2 Z ZZZZDumprsu( *)or o5 o 05 (22)

i=1 j=0k=L1=0 p=1r=0s=1u=0
In the above expressions (18) and (21) it remarks a few elastodynamics matrices: inertia
and pseudo inertia matrices, as well as the matrices of the Coriolis and centrifugal terms.
» In keeping with LE-type equations on the one hand, and on the other hand Appell’s
equations [3] and [4], the generalized inertia forces are defined with the following:

Qik;e(ekf):{;[aege}aege:a;;e}:;{gm; wizloe o }—;9”-6{Mee(ﬁe)}~9e

260y | 06 06y 26,

klee d L ( ) 0 13 WL ee (*e) e e
Qi —d{zzMukl }_669 {ZZZ Mipr \0 65 O
i=1 j=0 Kl i=1 j=0p=1r=0 (23)
n.mj . nm n Mp . o |1 mi oM L
INATE IR NNI=c W} 650 -2 LS S S g 6
i=1 j=1 i=1 j=0p=1r=0 0 20g |2id Dm0

Remarks. In the above expressions, the generalized inertia forces when 1=0 are
corresponding to generalized variable g, from the driving joint, and the other to

generalized variable g, answerable to the generalized deformations of the flexible links.
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3.2 The Elastodynamics Equations

The elastodynamics equations are devoted to establishment of the generalized
driving forces for the robot structure with flexible links. In keeping with [3] and [4] all
generalized elastodynamics forces are implemented with the new expressions, in which
the elasticity parameters are included. The matrix equation of elastodynamics shows as:

oz (7°:0%:0° ) ar (7% )+ (7% )+ 0 07 )+ o (8°16° ) =Qu(9:0:5 ). (24)

The above equations are also obtained on the basis of Hamilton-Ostrogradski principle:
_ . = d . = —

j{&Ege(ee;ee)—z.a{Ege(ee;0 ) st oBg +laeT +QgT -] 57 }-dt ~0;(25)

j{aEge(ée;59)—2%{Ege(§e;§ ) ot-sez(ae )+ o +a - eeT]aee}.dt=o. (26)

In the above equation the generalized dynamics forces {Qge (6’_ ¢ );Qseﬁ (5 ¢ );ngf (5 ¢ )} are
implemented: They are answerable to the gravity forces, manipulating load;

deformations of the flexible structure, and Q5 (5 e.9%:0 ej is the column vector of the

generalized driving forces from every driving joint of the elastic robot structure.

4. CONCLUSIONS

Within of this paper, the generalized elastodynamics equations have been
analyzed for the robot structure with flexible links. At first the kinetic and acceleration
energy for rigid structures have been defined by means of the matrix exponentials. On the
basis of a few formulations, the defining expressions to generalized elastodynamics forces
have been determined. In the view of this, the matrix expression of the kinetic and then
acceleration energy has been presented. In the study of the mechanical robot structures
with elastic driving joints and flexible links, the influences of the small linear and angular
deformations about the generalized inertia and active forces have been dignified. The
algorithm of the generalized elastodynamics forces, described in this paper, will be
included into SIMMECRODb Simulator devoted to complex study concerning geometry,
kinematics, dynamics, as well as accuracy for the robots with rigid and flexible links.
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