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Abstract: The algorithm of the dynamic control functions (IDM) achieves a complex study 
regarding the behavior to whatever mechanical robot structure (MRS), with rigid or elastic links. 
Beside the dynamic control functions, determined with various algorithms, the dynamic 
functions of the operational variables can be also analyzed. On the basis of new formulations, in 
this paper, the expressions for the kinetic energy, acceleration energy and generalized forces 
answerable to MRS with flexible links will be presented. Using on the one hand Lagrange-Euler 
(LE-type) equations, as well as Appell’s equations, and on the other hand the Hamilton-
Ostrogradski principle the generalized elastodynamics equations in Robotics will be analyzed. 
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1. INTRODUCTION 
The dynamics robot equations can be defined, in a simplified form, as below: 

( ) ( )[ ] ( ) ( ) ( ) ( ){ }t;t;tf = tQ   ; tQf =t eee1ee
m

ee
m

e θθθθ &&&− ; ( ) ( )[ ]Tiee
m

ee
m n1=i;tQ  = tQ → .      (1) 

Above ( ) ( ) ( ){ }t;t;t eee θθθ &&&  and )tQ ee
m  represent the column vectors typical of the 

generalized variables, and generalized driving forces respectively from every driving 
joint of the robot. The last is also called 
the dynamics control function. The 
mechanical robot structure (MRS) with 
n d.o.f., considered as non-conservative 
system, has been represented in Fig.1. 
Unlike first equation from (1) that 
expresses the direct dynamics model, 
the second is called the inverse 
dynamics model (IDM). The algorithm 
of the dynamic control functions (IDM) 
is included in SimMEcROb Simulator 
[2]. In this paper the dynamics 
equations for rigid structures and then 
the generalized elastodynamics 
equations for the robot with elastic 
links will be determined. 
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2. THE MATRIX DYNAMICS EQUATIONS IN ROBOTICS 
 In this section, according to [2] and [3], the kinetic and acceleration energy, as 
well as the matrix dynamics equations for robots with rigid structure will be analyzed. 
 2.1 The Kinetic Energy. The Acceleration Energy 

In the following a kinetic link from 
MRS is taken into study, in keeping with 
Fig. 2. It contains infinity of elementary 
mass dm continually distributed in the 
whole volume of the kinetic link. The 
kinetic energy for the mechanical robot 
structure, having .f.o.dn , is determined 
with the below expression: 
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In the kinetic energy a new dynamic matrix is also defined as the inertia matrix: 
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The inertia matrix (4) of the kinetic energy in the Cartesian state space is defined. 
 It is known that, the dynamics equations 
to whatever mechanical robot structure (MRS), 
can be expressed by extending the study about 
the acceleration energy. In keeping with [3], and 
[4], the new explicit and matrix expression of 
the acceleration energy to robot dynamics shows as: 
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The above dynamic matrices are known as the matrix of the Coriolis terms ( )θB  and 

centrifugal terms ( )θC , while ( )θθ &;D  is a new pseudo inertia matrix. Their terms are also 
expressed by means of the matrix exponentials below written: 
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The acceleration energy in the Cartesian configuration space is defined by means of the new expression: 
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 2.2 The Dynamics Equations 
 On the basis of the above expressions, in keeping with [2] and [3], the column 
vector of the generalized variables with respect to Cartesian state space is determined: 
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where orithmlgADGMX;t;M p
0

1pppp ⊂−=⊂ −τττ τ , and where m1p →= represents the 
number of the configurations taken into study, according to IKM Algorithm. 

3. THE ELASTODYNAMICS EQUATIONS IN ROBOTICS 
 This section is devoted to define the generalized elastodynamics equations, 

when the robot links are dominated of 
flexibility properties. At first, a few 
kinematic transformations are 
described. In the aria of the small 
deflections, and considering the aspects 
from Fig.4, the time functions for the 
angular and linear deformations of the 
link ( )i  are written, according to [5], as: 
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The functions: ( )tq ij  are time amplitude 
of the proper modes im1j →= , and they are completing the generalized variables ( )tq i . 
The position vector for an elementary mass md  is: i
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The symbol ( )e  dignifies the elasticity of the kinetic link. After a few kinematic 
transformations, the new locating matrix, between adjoining elastic links, shows as: 
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The locating matrix 1iiT −  is answerable to rigid link, while e
ijT∆  to the small deformations. 

About the above locating matrix is applied the time derivatives of first and second order as: 
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The column vector of the generalized variables is completed with ( )tq ij  as below: 
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3.1 The Kinetic and Acceleration Energy in Elastodynamics 
 In the following, considering that MRS is characterized through ( )n  flexible links, 
the kinetic energy, which expresses the elastodynamics behavior [1], is defined as below: 
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 The elastodynamics equations can be likewise determined by means of the Appell’s 
equations. In the view of this, the acceleration energy answerable to a flexible link from 
MRS is established with the new elastodynamics expression: 
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For the whole MRS, supposing that the ( )n  kinetic links are flexible the acceleration 
energy in the new matrix expression is shown in the two variants below: 
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In the above expressions (18) and (21) it remarks a few elastodynamics matrices: inertia 
and pseudo inertia matrices, as well as the matrices of the Coriolis and centrifugal terms. 

 In keeping with LE-type equations on the one hand, and on the other hand Appell’s 
equations [3] and [4], the generalized inertia forces are defined with the following: 
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Remarks. In the above expressions, the generalized inertia forces when 0l =  are 
corresponding to generalized variable kq  from the driving joint, and the other to 
generalized variable klq  answerable to the generalized deformations of the flexible links. 
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 3.2 The Elastodynamics Equations 
 The elastodynamics equations are devoted to establishment of the generalized 
driving forces for the robot structure with flexible links. In keeping with [3] and [4] all 
generalized elastodynamics forces are implemented with the new expressions, in which 
the elasticity parameters are included. The matrix equation of elastodynamics shows as: 
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The above equations are also obtained on the basis of Hamilton-Ostrogradski principle: 
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In the above equation the generalized dynamics forces ( ) ( ) ( ){ }eee
def

eee
SU

eee
g Q;Q;Q θθθ are 

implemented: They are answerable to the gravity forces, manipulating load; 

deformations of the flexible structure, and ⎟
⎠
⎞⎜

⎝
⎛ eeeee

m ;;Q θθθ &&&  is the column vector of the 

generalized driving forces from every driving joint of the elastic robot structure. 
 

4. CONCLUSIONS 
 Within of this paper, the generalized elastodynamics equations have been 
analyzed for the robot structure with flexible links. At first the kinetic and acceleration 
energy for rigid structures have been defined by means of the matrix exponentials. On the 
basis of a few formulations, the defining expressions to generalized elastodynamics forces 
have been determined. In the view of this, the matrix expression of the kinetic and then 
acceleration energy has been presented. In the study of the mechanical robot structures 
with elastic driving joints and flexible links, the influences of the small linear and angular 
deformations about the generalized inertia and active forces have been dignified. The 
algorithm of the generalized elastodynamics forces, described in this paper, will be 
included into SimMEcROb Simulator devoted to complex study concerning geometry, 
kinematics, dynamics, as well as accuracy for the robots with rigid and flexible links. 
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