
A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation

Quality and Testing, Robotics
May 13-15, 2004, Cluj-Napoca, Romania

 1 of 6

Design and implementation of industrial communication
network interfaces

Authors: Dr. Gheorghe Sebestyen, Dr. Kalman Pusztai

Technical University of Cluj-Napoca

str. G. Bariţiu nr. 26-28, Tel:0264-400476
gheorghe.sebestyen@cs.utcluj.ro

kalman.pusztai@cs.utcluj.ro

Abstract:

Modern distributed control systems require an adequate communication infrastructure.
Industrial networks are specially designed to fulfill the requirements of an industrial
environment. This paper presents issues and solutions concerning the design and
implementation of industrial network interfaces. The first part of the paper summarizes
communication requirements and conditions in a distributed control application. As a solution,
in the second part of the paper, a generic multilevel and multiprocessor interface model is
proposed. This model was used to implement a master interface for the ASi industrial protocol.
Tests made on the interface showed that the restrictive specifications of the ASi protocol were
successfully fulfilled, demonstrating the feasibility of the proposed model.

Keywords: industrial networks, real-time systems, interface design, distributed control

1. INTRODUCTION

In traditional control systems the information flow between the process automation
devices (sensors, actuators) and intelligent control devices (PLCs, regulators, process
computers) is assured through a set of dedicated, point-to-point connections. These
connections are using analog signals, or in the best case digital serial protocols. This
approach limits the scalability of the system, offers a low reliability and implies high
cabling costs.

Complex control applications require a more flexible network-based communication
[1]. The use of digital networks in control applications offers a number of advantages:
lower installation and maintenance costs, more complex data transfer facilities, higher
reliability, higher noise immunity, error detection and correction mechanisms, and many
others. But in most control applications the use of general-purpose computer networks
is not a feasible solution. There are a number of special requirements imposed to the
communication infrastructure that derive from the special nature of the control
applications [5]; these requirements are not covered by the common computer network
protocols. The most critical requirements are as follows:

- higher reliability and security conditions for control data transfers
- real-time message delivery conditions

mailto:gheorghe.sebestyen@cs.utcluj.ro
mailto:kalman.pusztai@cs.utcluj.ro

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation

Quality and Testing, Robotics
May 13-15, 2004, Cluj-Napoca, Romania

 2 of 6

- deterministic and predictive behavior
- higher immunity to industrial electromagnetic noise and tolerance to wide

environment parameters' variations (temperature, humidity, supply voltages)
- small reaction time, adapted to the limitations of local control loops
- efficient transfer of specific data flow patterns (usually small and unstructured

control data), which implies small message overheads and explicit support for
periodic data transfers

- simple protocols that can be implemented on devices with limited resources
Because of these conditions a number of networks were specially developed for the

control field. These networks are known as industrial networks or fieldbuses. Today
there is a wide variety of such networks, which sometime cause compatibility and
interoperability problems between automation devices.

Design and implementation of interfaces for these networks is a challenging task,
mainly because of the previously specified conditions and restrictions. In the next
paragraphs a generic interface design model is proposed, which is than used to
implement an ASi master interface.

2. DESIGN ISSUES FOR AN INDUSTRIAL NETWORK INTERFACE
The most critical problem in the design of an industrial network interface is the

fulfillment of real-time conditions [2]. Most industrial protocols offer explicit
mechanisms to specify and control the time restrictions of control messages [4].
Periodic data transfers are typical for control systems (e.g. process data acquisition,
command generation, visualization, etc.), because most of the control and supervisory
functions are repeatedly activated. The network interface must assure the delivery of
such data with high time precision. Any delay or variation in the transmission period
may affect the accuracy of the computed control functions. This is understandable if we
consider that almost all the control functions are time dependent and their generation
implies integral and derivative operations in time domain.

Often the correct behavior of a network interface is directly determined by the
fulfillment of time restrictions. If a network node is not able to respond in a predefined
time interval to a request, it is considered, by the other nodes connected on the network,
as defective and it is excluded from the future data transfers. This condition is present
also in some general purpose computer network protocols, but the difference is in the
magnitude of the time limit. For instance, in the case of ASi protocol, the magnitude of
the time restrictions is around 5-10 νs, which is comparable with the execution time of a
single instruction. Therefore many low level protocol functions must be implemented in
hardware.

Another issue is the execution of different communication, synchronization and
network administration functions in a parallel way [6]. In the same time, the interface
must react to the network traffic (e.g. implement the multiple access control
mechanisms, identify the network configuration, detect errors, etc.), it must respond to
requests coming from the application level, it must prepare data for the outgoing data
flow and it must receive data from the incoming flow. Considering the previously
mentioned time restrictions, in most cases this issue can be solved only with a
multiprocessor architecture and special task scheduling and execution strategies.

An important aspect in the design of a control network is the reliability and security
issues. It is not acceptable to have failures or even accidents in the manufacturing
process caused by the communication environment. Therefore the communication

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation

Quality and Testing, Robotics
May 13-15, 2004, Cluj-Napoca, Romania

 3 of 6

protocol includes more complex error detection and data recovery mechanisms, which
must be implemented at a low level, in the network interface. Another reason for an
error-free transmission is the fact that communication errors and their recovery
mechanisms may significantly affect message delivery delays.

3. GENERIC MODEL OF AN INDUSTRIAL NETWORK INTERFACE
The proposed solution for the issues mentioned in the previous paragraph is a

multilevel and multiprocessor interface model. Figure 1 shows the general scheme of
this solution.

The communication functions implemented by the network interface are divided on

three logical levels, as follows:
The lowest level (called Message Transmission/Reception) is responsible for the

transmission and reception of messages on the communication medium. It solves the
following problems:

- digital information coding and decoding
- detection of transmission errors (e.g. erroneous data, delayed or lost messages)
- message selection or filtering, based on address of on content
- message buffering
- network traffic monitoring
This level is implemented with specially designed transceiver circuits (for the

coding/decoding purpose), with a general-purpose microcontroller (e.g. from the
Microchip's PIC family) and a firmware embedded in the non-volatile memory of the
microcontroller.

The second level (called Network Access Control and Administration)
implements the network access mechanism specified in the protocol. In the case of
industrial networks deterministic access mechanisms are preferred, such as: token-
passing on a bus or ring topology (e.g. Profibus, Interbus-S), circular polling (e.g. ASi
or WorldFIP), virtual token (e.g. P-Net), time division and reservation (e.g. Mars), or

Level 3
Application interface

Application
Access functions

DPRAM

Level 2
Network access
control

Interface
procedure

Control
procedure

Main control loop

Interrupt routines

Real-time clock
Send/receive

interrupts

Level 1 Message
send/receive

Communication driver
Network transceiver

Industrial network

Host computer

Communication
controller

Network
controller

Figure1. Multilevel interface model

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation

Quality and Testing, Robotics
May 13-15, 2004, Cluj-Napoca, Romania

 4 of 6

even collision-based mechanism but with more deterministic static priorities (e.g.
CAN). This level is also responsible for the automatic network identification and
reconfiguration functions.

The implementation of this level is the most critical part of the interface design
because this level solves a number of complex communication and network
administration functions in a concurrent manner and with restrictive time limits. At this
level the following functions are implemented:

- network identification and access order establishment
- time parameters' settings (e.g. duration of a token roundtrip cycle, transmission

time limits, etc.)
- error detection and correction, node failure detection and recovery
- bidirectional data flow transmission and reception
- synchronization with the lower and the upper levels
A medium-performance microcontroller (e.g. Intel's I8032 microcontroller family)

is dedicated to this purpose. The specified functions are implemented through a program
written in the microcontroller's internal memory. To fulfill the time restrictions of the
concurrent tasks, a special program execution model must be adopted. There are a
number of classical solutions for this purpose, such as:

- the main control loop approach - concurrent tasks are sequentially activated in a
loop that has a well controlled cycle time

- interrupt-based system - timer and external interrupts determine the execution
order of the concurrent tasks

- foreground-background approach - time-critical tasks are executed with a higher
priority in a foreground loop and less critical tasks in the time that remains
between loops

- the state automaton model - the execution of a given function is planed in a
number of steps (states), avoiding wait loops for external events

- real-time scheduler - tasks are activated by a scheduler module based on their
time parameters (deadlines, periods)

Analyzing the available computing resources of a microcontroller and the required
functional and time conditions, at the end, a mixed solution was adopted, in which the
first four methods were combined: There is a main loop executed in foreground that
implements the network access control and administration functions, there are a number
of routines activated by interrupts (the clock routine and the send/receive routines) and
there is an upper interface module executed in background. All program modules are
designed as state automatons; if activated, a module will execute at most a single
transition between two states. In this way waiting loops are avoided and the reaction
time of the interface is significantly improved. This approach allows a precise control of
the execution time for the main control loop. The designer can evaluate the execution
time by counting the maximum number of instructions contained in a program
sequence.

The third level (called Application Interface) contains a set of functions used by a
control application to access the network's communication facilities. These functions
allow: bidirectional data transfers, periodic data acquisition and commands generation,
network configuration changes and visualization. This level is implemented by the host
processor. The functions are gathered in a dynamically Linked Library (DLL).

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation

Quality and Testing, Robotics
May 13-15, 2004, Cluj-Napoca, Romania

 5 of 6

In the proposed model a special concern was given to the interface between levels.
This interface must solve the data exchange and synchronization between levels. The
adopted mechanisms directly influence the reaction time of the network interface.

For the lower two levels synchronization is solved through interrupt signals and
flags. Whenever a new message is received (receive buffer full) or sent (send buffer
empty) an interrupt is generated to the microcontroller of the second level. Data is
transferred through interrupt routines. The data is physically transferred through an
input and an output register connected to both microcontrollers. The network controller
preserves the sent or received messages in a small circular buffer that may contain the
last 2 to 4 messages (its dimension is optimized to the protocol's characteristics).
Through this buffer synchronization delays are avoided. The data to be sent is prepared
in advance and it is placed in the buffer. In this way the message is sent on the network
as soon as the network access mechanism allows it.

The interface between the second and the third level is implemented with a dual-
port-RAM memory (DPRAM). This memory can be accessed simultaneously by the
host processor and by the second level microcontroller. It contains a section for data
received and sent and a section for synchronization flags. To avoid access conflicts to
the same data, two zones are defined: one available for the host computer and one for
the communication controller. When data and flags are filled-in the zones are logically
switched. This dual-memory approach assures a very good transfer time, avoiding
unnecessary delays. There is also possible to access this memory directly from the
application program shortcutting the third level.

4. CASE STUDY: IMPLEMENTATION OF A MASTER INTERFACE FOR

ASi PROTOCOL
The ASi (Actuator Sensor interface) protocol is a very good testbed for the proposed

generic network interface model because it has very restrictive time limits and
incorporates complex network administration, automatic reconfiguration and error
detection mechanisms.

ASi is an industrial protocol meant to connect simple automation devices (sensors
and actuators) to a medium complexity device (PLC or process computer). The
communication is made through a two-wire bus, which is also used to supply the
network nodes. On a bus up to 32 nodes (64 in the extended version) may be connected.
The master node controls the traffic on the bus and periodically sends messages and
interrogates the slave nodes. A slave node handles four input and four output digital
signals. In a bus cycle the master node sends and receives data to and from all the
existing and enabled slave nodes. The protocol assures automatic identification of new
nodes and reconfiguration in case of defective nodes. The functions of a defective node
are automatically transferred to a redundant node that has similar characteristics.

There were two critical aspects in the implementation of the master ASi interface:
the complexity of the automatic network identification and reconfiguration mechanism
included in the protocol and the fulfillment of time restrictions. The protocol requires
solving the network administration functions (e.g. identification of new nodes, detection
of defective nodes, transfer of functions to new nodes, etc.) in parallel with normal data
transfers. A given function (e.g. identification of a new node) is achieved during a
number of complete data transfer cycles (7 in the case of identification). Any
consecutive transmission errors affect the evolution of the administrative functions.

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation

Quality and Testing, Robotics
May 13-15, 2004, Cluj-Napoca, Romania

 6 of 6

The parallel execution was simulated by using the state automaton model: every
function, including the data transmission one, was implemented as a sequence of steps;
when the main control loop calls a routine implementing a given function only one step
is executed. In this way the execution time is strictly controlled and during a single loop
every function has the opportunity to evolve to the next stage if the conditions for that
step are fulfilled. To increase the responsiveness of the system two priority levels were
introduced. Higher priority functions are called in every cycle of the control loop; lower
priority functions are called only at a multiple of the control loop cycle. In the higher
priority class time-critical functions were included such as low-level data transfer
function or the error detection function; the lower priority class contains data access
functions implemented for the third level.

Time restrictions are part of the ASi protocol specification. For instance the delay
between two consecutive messages must be in the interval 12-18 νs, otherwise it is
considered a transmission error. The fulfillment of these sever time restrictions are
achieved with a combination of methods and components that derive from the generic
interface model: parallel execution of interface function on three processors, a combined
execution strategy for the software modules, flexible dataflow support between the
logical levels and processors and optimized assembly language programming.
 The measurements and tests made on the interface showed compatibility with
the protocol specifications regarding functional behavior and time restrictions.

7. CONCLUSIONS

This paper analyzes the main issues and possible solutions concerning the design
and practical implementation of interfaces for industrial networks. A generic multilevel
and multiprocessor interface model is proposed as a solution to the special requirements
present in the specifications of an industrial network. A combined execution strategy is
proposed to solve the real-time restrictions imposed by the protocol. The model was
used to implement an ASi master interface. The tests and validation procedures showed
the feasibility of the generic model.

 References

1. Cardeira C., Simonot-Lion F, Bayard M., [1995], “Intelligent Field Devices and
Field Buses: Impact on Applications Design Methodology”, Studies in Informatics
and Control, Vol 4 No. 3 1995, pp 255-262

2. Pasadas F. Cardeira C., [1995], Real-Time Protocols for Industrial LANs, in
Proceedings of the Network of Excellence in Intelligent Control and Integrated
Manufacturing Systems, Portugal

3. Sebestyen Ghe., [1996], A Multistate Model Used in Small Real-Time Systems, in
Automation Computers and Mathematics ACAM 1996, lito. Technical University of
Cluj

4. Sebestyen Ghe., [1998], Real-Time Communications through Industrial Networks,
Proceedings of A&Q'98 International Conference on Automation and Quality
Control, Cluj-Napoca, p A243-249

5. Upender B. Koopman P., [1994], Communication Protocols for Embedded Systems,
in Embedded Systems Programming, 7(11), pp46-58

6. **** [2000], Actuator Sensor Interface V2.11 Complete specification, protocol
standard

