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ABSTRACT    
  
 This paper presents a Model Predictive Control algorithm which uses on-line simulation 
and rule-based control. The basic idea is the on-line simulation of the future behaviour of 
control system, by using a few control sequences and based on nonlinear analytical model 
equations. Finally, the simulations are used to obtain the ‘optimal’ control signal. These issues 
will be discussed and nonlinear modeling and control of a single-pass, concentric-tube, counter 
flow heat exchanger will be presented as an example. 
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based control, heat exchanger.  
 
  

 1. INTRODUCTION. 
 
 Model Predictive Control (MPC) refers to a class of algorithms that utilize an 
explicit process model to compute the control signal by minimizing an objective 
function. When MPC is employed on nonlinear processes, the application of this typical 
linear controller is limited to relatively small operating regions. The accuracy of the 
model has significant effect on the performance of the closed loop system. Hence, the 
capabilities of MPC will degrade as the operating level moves away from its original 
design level of operation. A solution to avoid these problems is multiple model adaptive 
control approach (MMAC) which uses a bank of models to capture the possible input-
output behavior of processes [3]. In most of these strategies, the controllers are based on 
linear models with fixed parameters so that the vast body of linear control theory can be 
applied. Other solutions include the use of a nonlinear analytical model, combinations 
of linear empirical models or some combination of both.  

The performance objective typically penalizes predicted future errors and 
manipulated variable movement subject to constraints. The ideas appearing in greater or 
lesser degree in all the predictive control family are basically: 

-explicit use of a model to predict the process output in the future; 
-on line optimization of a cost objective function over a future horizon; 
-receding strategy, so that at each instant, the horizon is displaced towards the 

future, which involves the application of the first control signal of the sequence 
calculated at each step. 

Performance of MPC could become unacceptable due to a very inaccurate 
model, thus requiring a more accurate model. This task is an instance of closed-loop 
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identification and adaptive control. Here it is important to remember that the model is 
only used as an instrument in creating the best combined performance of the controller 
and the actual system, so the model does not necessarily need to be a good open-loop 
model of the system. The performance measure should be able to capture as much of the 
closed loop behavior as possible. Let’s consider that it is possible to compute: 

 - the predictions of system output over a finite horizon (N); 
 - the cost of an objective function,  

for each possible sequence:  u(.)={u(t),u(t+1), ... ,u(t+N)}                              (1) 
and then to choose the first element of the optimal control sequence. For a first look, the 
advantages of the proposed algorithm include the following: 
 -the minimum of objective function is global; 
 -it is not necessary to invert a matrix, so potential difficulties are avoided; 
 -it can be applied to nonlinear processes if a nonlinear model is available; 
 -the constraints (linear or nonlinear) can easily be implemented. 

The drawback of this scheme is a very long computational time, because there 
are possibly a lot of sequences. Therefore, the number of sequences must be reduced.  

 
 
2. CONTROL ALGORITHM  

 
 The nonlinear equations of the process can be used directly in the control 
algorithm.  The predictions of system output are calculated by integrating the nonlinear 
ordinary differential equations of the model over the prediction horizon, by using a few 
control sequences. For a first stage, are used the next four control sequences:           
              ( ) { }minminmin1 ,..,, uuutu =   ( ) { }minminmax2 ,..,, uuutu =  
 ( ) { }maxmaxmin3 ,..,, uuutu =  ( ) { }maxmaxmax4 ,..,, uuutu =                              (2)  
where umin and umax are the limits of the control signal. There are two pair sequences: 
(u1(t), u2(t)) and (u3(t), u4(t)) which are different through  the preponderance of  umin or 
umax in the future control signal. The pair sequences are different only through the first 
term. In the second stage, depending by the behavior of control system, it is used an 
algorithm that modifies the limits of control signal:  
      umin ≤ uminst(t) ≤ u(t) ≤ umaxst(t) ≤ umax                      (3) 

        Δumin≤ Δu≤ Δumax          (4) 
In relations (2), the values of umax, umin are replaced with uminst(t), uminst(t). The  control 
signal is computed using a set of rules based on the extremes (max0, max1, min0, min1) 
of the output error of predictions (ai, i=1..4 are predicted errors, d is dead time): 
Rule 1: If  the sequence ( ) { }minminmin1 ,..,, uuutu =  leads to: 

( ){ }ta
Ntd

10 maxmax
<<

=    0max0 >             (5) 

 and a1(d+1)<0,  then u(t)=uminst(t). 
Rule 2 : If the sequence ( ) { }minminmax2 ,..,, uuutu =  leads to: 

( ){ }ta
Ntd

21 maxmax
<<

=    0max1 <        (6) 

  then u(t)=umaxst(t). 
Rule 3:  If the sequence ( ) { }maxmaxmin3 ,..,, uuutu =  leads to  

( ){ }ta
Ntd

30 minmin
<<

=    0min 0 >            (7) 

  then u(t)=uminst(t). 
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Rule 4: If the sequence ( ) { }maxmaxmax4 u,..,u,utu = leads to: 
( ){ }ta

Ntd
41 minmin

<<
=    0min1 <         (8) 

  and: a4(d+1)>0, then u(t)=umaxst(t). 
Rule 5: In other cases it is used a linear relation: 

( ) ( ) ( )
01

0max1min
minmax

minmax
−
−

=
tutu

tu stst              (9) 

A good behaviour of the control algorithm leads to a prevalence of rule 5. Other rules 
are used to modify the values of umaxst, uminst and to stabilise the control  signal. This 
algorithm does not address processes where the gain of the process changes sign. 
 
 
 3. EXAMPLE: HEAT EXCHANGER 
 
 Heat exchangers are devices that facilitate heat transfer between two or more 
fluids at different temperatures. Usually, model predictive control (MPC) uses a linear 
model and an on-line least square algorithm (RLS) to determine the parameters.  Heat 
exchangers are nonlinear processes. To apply the standard MPC algorithms it is possible 
to use multiple model adaptive control approach (MMAC) which uses a bank of models 
to capture the possible input-output behavior of processes [3]. Other solutions are based 
on neural networks and fuzzy logic [4], [5]. 
 In this paper it is used an example from [6]: a heat exchanger with hot fluid -
engine oil at  80ºC, cold fluid - water 
at 20º C, by using a single-pass 
counter flow  concentric-tube. Other 
data and notations: length (L): 60m, 
heat transfer coefficients (k1=1000 
W/(m2 ºC), k2=80 W/(m2 ºC)), the 
temperature profile of fluids and wall 
( ),(1 tzθ , ),(2 tzθ , ),( tzwθ ), specific 
heat (c1, c2, cw), cross-sectional area 
for fluids flow and wall (S1, S2, Sw), 
density of fluids and wall (ρ1, ρ2, ρw),  
flow speed of fluids (v1, v2), transfer 
area(S) (fig. 1). If physical properties 
(density, heat capacity, heat transfer 
coefficients, flow speed) are assumed 
constant, the heat exchanger model is described using a shell energy balance as: 

-hot fluid:      
( ) ( ) ( ) ( )[ ]tztz

L
Sk

z
tzSvc

t
tzSc w ,,

,,
1

11
1111

1
111 θ−θ=

∂
θ∂

ρ−
∂

θ∂
ρ                (10) 

-cold fluid:    
( ) ( ) ( ) ( )[ ]tztz

L
Sk

z
tzSvc

t
tzSc w ,,

,,
2

21
2222

2
222 θ−θ=

∂
θ∂

ρ+
∂

θ∂
ρ          (11) 

-wall:              
( ) ( ) ( ) ( ) ( )[ ]tzkktzktzk

L
S

t
tzSc w

w
www ,,,

,
212211 θ+−θ+θ=

∂
θ∂

ρ        (12) 

Using general notation θa(i,j) with a=1 (hot fluid), a=2 (cold fluid), a=w (wall), i , j   
discrete elements in space respectively time, the discrete equations corresponding to 
partial differential equation (10),(11),(12) are: 

 
Fig. 1: Temperature distributions 
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        ( ) ( ) ( ) ( ) ( ) ( )[ ]jikkjikjik
L

tSjiji www ,,,,1, 212211 θ++θ+θ
∆

+θ=+θ                 (15) 

In a control application, these equations can not be used directly because v1  and v2 are 
not constant in time. Let’s consider next assumptions: 
 - the speed of fluids is limited: 
   v1(min)<v1<v1(max); v2(min)<v2<v2(max); vmax = max (v1(max) , v2(max))          (16) 
 - the fluids speed is only time-functions: 
   v1=v1(t) , dv1/dz=0 , v2=v2(t) , dv2/dz=0                  (17)
 - the length of heat exchanger is divided in n intervals:  

 L=nΔz;                                                                                 (18) 
 - in a time interval Δt, the fluids cover only a part of Δz: 
     nvvmaxΔt=Δz ; Δt < L /(nnvvmax)                                                          (19) 
 - two variables Δz1, Δz2 are using to totalize the small fluid displacements: 
  Δz1(t+Δt )= Δz1(t)+v1Δt ; Δz2(t+Δt )= Δz2(t)+v2Δt                        (20) 

 - in simulations, the displacements of the fluids become effective only if Δz1>Δz         
              or/and Δz2>Δz; in these cases, Δz1← Δz1-Δz or/and Δz2← Δz2-Δz                (21) 
In other words, in simulations, the continue moves of fluids are replaced with small 
discrete displacements. As a result,  the heat exchanger model is described by equations: 

( ) ( ) ( )ji
SLc
tSk

SLc
tSkjiji w ,1,1,

111

1

111

1
11 θ

ρ
∆

+







ρ
∆

−θ=+θ                                        (22) 

( ) ( ) ( )ji
SLc
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SLc
tSkjiji w ,1,1,

222

2

222

2
22 θ

ρ
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+







ρ

∆
−θ=+θ                                   (23) 

( ) ( ) ( ) ( ) ( ) ( )[ ]jikkjikjik
L

tSjiji www ,,,,1, 212211 θ++θ+θ
∆

+θ=+θ              (24) 

In a practical implementation, 
there are used equations (20), 
(21), (22), (23), (24).  
It is important the number and 
position of temperature 
sensors. Here, it is considered 
that only the inlet and outlet 
temperatures (hot fluid, cold 
fluid, wall) and the flow rate of 
fluids are measured. The 
temperatures inside heat 
exchanger are estimated. The 
quality of heat exchange 
depends especially by the heat 
transfer coefficients. These parameters depend by temperatures, accumulation of   
deposits of one kind or another on heat transfer surface, shape of tube, etc. The 
temperature distributions inside heat exchanger (process and model) are presented in 

 
Fig. 2: Process and model - diagrams 
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fig. 2 using notation θa(i,j). Analogous, the notation Mθa(i,j) is used for model. At every 
sample period, it is possible to compute Δh, Δc, Δw1, Δw2, the temperature prediction 
errors of outlet hot fluid, outlet cold fluid, wall. These predictions are used to correct the 
temperature distributions inside the model of heat exchanger, using translations and 
rotations of distributions. Also, prediction errors can be used to modify the parameters 
of the model using an algorithm based on rules. 
 
 
 4. EXPERIMENTAL RESULTS  
 

 The next applications show the main features of the MPC algorithm. The set 
point has a variable shape (42°C, 47°C, 
52°C, 47°C, 42°C..). The limits of u(t) (hot 
fluid flow rate) are:  0.05≤u(t)≤  0.5     
[kg/s]. The flow rate of cold fluid is constant 
(0.08 kg/s). The temperatures of cold fluid 
( °20 ) and hot fluid ( °80 ) are constant.  
Some experiments with variable flow rate 
or/and variable temperature of cold fluid is 
presented in [2]. First, it is used an accurate 
model (Fig. 3, fig. 4). If the algorithm uses 
only 1..5 rules, the variance of u(t) will be 
large. To reduce this variance, a solution is 
to use a funnel zone for control signal, based 
on inequality (3). For example, if  rule 5 is 
active then umaxst decreases and uminst 
increases. Another solution is to limit u∆ , 
using inequality (4). In steady-state regime, 
control signal is computed using average of 
past and new values. The algorithm do not 
uses directly an integral component. In 
figure 3, steps 50..80, the algorithm tries to 
reduce the error as fast as possible. As a 
result, a damped oscillation appears. To 
avoid this behavior, a solution is to use a 
reference trajectory.  
 In figure 5, 6, it is presented an 
adaptive case; the heat transfer coefficients 
depend by temperature: ( )200/10 θ+= kk . 
Initial temperature of cold and hot fluids is 

°20 . The evolution of the estimations of 
heat transfer coefficients is presented in 
figure 7. To obtain these estimations, both 
rotations and translations of temperature 
distributions and rule based correction of 
heat transfer coefficients are used.   
 In figure 8 it is used the same 
conditions for heat transfer coefficients; it is 

 
Fig. 3: Setpoint, output (accurate model) 

 
Fig.4:Controller output (accurate model) 

 
Fig. 5: Setpoint, output (adaptive case) 

 
Fig. 6: Controller output (adaptive case) 
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Fig. 7: Parameters identification 

not used the rotations and translations of temperature distributions. As a result, the 
quality of control algorithm decreases. 
 
 5. CONCLUSIONS 
 
 This paper presents the study of a 
model based predictive control algorithm 
applied to non-linear processes: the heat 
transfer in liquid-liquid heat exchangers. 
The algorithm uses on-line simulation 
and rule-based control. A non-linear 
model of the process, based on finite 
difference method, is used directly in 
control algorithm. Also, a set of rules is 
used for parameters estimations and a 
geometric method is used to correct the 
temperature distributions inside heat 
exchanger. The control algorithm is able 
to maintain better set point tracking 
performance and disturbance rejection 
capabilities over the range of nonlinear 
operation. The proposed approach can be 
seen as a method for adaptive control of other nonlinear processes. 
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Fig. 8: Setpoint, output ( adaptive case) 


