
A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

DESIGN OF AN IMAGE PROCESSING FILTER
USING THE JBITS PACKAGE

Zoltan Baruch, Zoltan Balazsi

Technical University of Cluj-Napoca, Romania, Computer Science Department

E-mail: Zoltan.Baruch@cs.utcluj.ro

Abstract. This paper describes the design of a digital filter and its implementation in an
FPGA device. The filter designed and implemented is a grayscale filter used in image process-
ing applications. For this design the JBits package was used, which contains a set of Java
classes allowing to generate and modify configuration bitstreams for Xilinx Virtex FPGA de-
vices. Using this package, all configurable resources of a Xilinx Virtex FPGA device can be
individually set under software control. Therefore, a dynamic and partial reconfiguration of the
FPGA device is possible from a Java application. The dynamic reconfiguration allows to mod-
ify the filter parameters during run-time, without the need to completely reconfigure the device.

 Keywords: FPGA devices, image processing, reconfigurable architectures, JBits.

 1. INTRODUCTION

 Traditionally, image processing applications are implemented using general-
purpose DSP (Digital Signal Processing) chips. Although the DSP chips are optimized
for mathematical operations, their architecture is serial. Multiply and accumulate
(MAC) operations, typically found in DSP applications, are implemented using shared
resources.
 FPGA (Field-Programmable Gate Array) devices represent an alternative to im-
plement image processing algorithms. These devices are suitable for arithmetic-
intensive image processing functions. By implementing an image processing algorithm
in an FPGA device, the design can take advantage of distributed resources and parallel
processing in order to exceed the performance of single or multiple DSP processors [1].
 An FPGA device contains logical blocks and interconnection lines between
them. The operations that are to be performed by the device are specified by configura-
tion bits, which define the various blocks’ function and the interconnections between
blocks. Like processors, FPGA devices can be programmed after fabrication in order to
solve any computational problem allowed by their hardware resources. This program-
mability differentiates processors and FPGA devices from application-specific func-
tional units, which can perform only a function or a limited number of functions.
 Another advantage of FPGA devices is that they can be partially or completely
reconfigured during operation. Therefore, multiple functions can be performed using a
minimal configuration. For example, an FPGA device could be used in a system that
performs one of several image processing functions, and the device can be reconfigured
during operation to switch from one function to another.

 1 of 6

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 This paper describes the design of a grayscale filter and its implementation in an
FPGA device. The filter designed and implemented can be used in image processing
applications. The JBits SDK was used for this design, and therefore the design is run-
time reconfigurable. The run-time and partial reconfiguration allows to modify the filter
parameters during operation, without the need to completely reconfigure the device.
 The organization of the paper is as follows. Section 2 presents an overview of
the JBits SDK and of the design flow when using this tool. Section 3 describes the de-
sign of a grayscale filter using the JBits SDK. The testing procedure of the filter is pre-
sented in Section 4. Concluding remarks follow in Section 5.

 2. THE JBITS SDK

 The JBits SDK is a set of Java classes which provide an Application Program
Interface (API) for generating and modifying configuration bitstreams for the Xilinx
Virtex FPGA devices. This interface operates either on configuration bitstreams gener-
ated by Xilinx synthesis tools, or on bitstreams read back from the actual device [5].
Using the JBits SDK, all configurable resources of the device can be individually set
under software control. Therefore, a dynamic and partial reconfiguration of the Xilinx
Virtex FPGA devices is possible from a Java application.
 The JBits SDK provides access to all the resources of a Virtex FPGA device,
including the Look-Up Tables (LUTs) inside each Configurable Logic Blocks (CLBs)
and the routing resources adjacent to the CLBs. The device architecture is represented
as a two-dimensional array of CLBs, and each CLB is referenced by a row and column.
The JBits SDK allows to develop run-time reconfigurable (RTR) systems in a high-
level language. This SDK can also be used to produce or modify traditional static design
bitstream files for Virtex FPGA devices.
 Figure 1 illustrates the JBits design flow [4]. The user-written Java application
configures the FPGA device by communicating with the board containing the device.
The bitstream input to the Java application can be a null bitstream or a bitstream for an
existing design. The application may use the bit-level interface provided by the JBits
API, which allow to set or clear a single bit or a group of bits in the bitstream. This is a
low-level interface responsible for knowing the bit location in the bitstream of a given
configuration data for the devices supported in the Virtex FPGA family. The bit-level
interface interacts with the Bitstream class, which manages the device bitstream and
provides support for reading and writing bitstreams from and to files. This class can also
read back the existing configuration data from the operating device, which is necessary
for dynamic reconfiguration.

Figure 1. The design flow using the JBits SDK.

 2 of 6

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 The user application may also use the Run-Time Parameterizable Core
(RTPCore) library provided by the JBits SDK. This library is a collection of Java
classes defining macrocells or cores that can be dynamically parameterized and relo-
cated within a device. Examples of cores are registers, counters, adders, multipliers and
other standard Xilinx Unified Library logic and computation functions. In addition to
these primitive cores, other non-primitive RTP cores can be used, which are created by
instantiating primitive or non-primitive subcores connected with nets and buses.
 The Xilinx Hardware Interface (XHWIF) provides a portable layer to connect
JBits applications to reconfigurable hardware. By using this layer, JBits applications can
run without recompilation on various hardware platforms. For example, the host com-
puter executes the JBits application and configures a Virtex FPGA device located in the
PCI slot using the XHWIF API. This enables run-time configuration and reconfigura-
tion of the Virtex FPGA device.

 3. DESIGN OF A GRAYSCALE FILTER

 3.1. Design Overview

 The grayscale filter computes the arithmetic mean of the red, green, and blue
components of a pixel value from an image. Then a new pixel is generated, in which all
the three components are set to the arithmetic mean of the red, green, and blue compo-
nents of the corresponding pixel from the original image. In this way, a gray-scaled im-
age is generated from the original image.
 For the design of the grayscale filter, a class called GrayFilter was created using
the classes provided by the JBits SDK, version 2.8. This class is inherited from the
RTPCore class. RTPCore is an abstract class which defines methods for primitive, non-
primitive, and top-level cores. A primitive core does not contain subcores and uses JBits
calls to implement its functions. A subset of the standard Xilinx Unified Library primi-
tives is provided by JBits. A non-primitive core contains subcores and implements its
functions by instantiating primitive and non-primitive subcores connected with nets and
buses. A top-level core does not have a parent.
 The JBits CoreTemplate package was used for the design, which allows to effi-
ciently create dynamically parameterizable and relocatable cores. This package defines
classes for RTPCore components such as modules, nets, buses, ports and pins [4]. Cores
created with the CoreTemplate package may have CLB (Configurable Logic Block),
slice, or logic element placement granularity.
 The GrayFilter class implements a module with four input ports: a clock port,
and three ports for the red, green, and blue components of a pixel value. The output port
will contain the grayscale value of a pixel. These ports are connected to external signals;
for the pixel ports, these signals are 8-bit buses. For each pixel component, an 8-bit con-
stant is defined, which is multiplied with the pixel component value. The results are
three 16-bit values. These values are summed using two adders, and the result is stored
into an 18-bit register. To compute the arithmetic mean, a scaling factor is required,
which is multiplied with the 18-bit sum. The result of the multiplication is a 26-bit
value. In order to get an 8-bit result, a bounder module is used, which limits the result to
a maximum value.
 The steps followed for designing the grayscale filter are described next.

 3 of 6

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 3.2. Computing the Core’s Granularity and Dimensions

 The GrayFilter core has fixed CLB granularities. The horizontal granularity of
the core is computed with the calcWidthGran() method, and the vertical granularity is
computed with the calcHeightGran() method:
 public static int calcWidthGran() {return Gran.CLB;}
 public static int calcHeightGran() {return Gran.CLB;}

 The core has a fixed width of 24, the units being given by the width granularity
(CLB). The height of the core is 16 CLB units. These dimensions are returned by the
calcWidth() and calcHeight() methods, respectively:
 public static int calcWidth() {return 24;}
 public static int calcHeight() {return 16;}

 3.3. Defining the Core’s External Characteristics

 An RTPCore constructor defines the core’s ports, width, height, width granular-
ity and height granularity. Any core parameters that affects the dimensions or granular-
ity should be passed to the constructor. External signals connected to the ports can also
be passed as parameters.
 An instance of the grayscale filter is created with the following constructor:
 public GrayFilter (String instanceName, Net clk, Bus redIn, Bus greenIn,
 Bus blueIn, Bus grayscaleOut) throws CoreException {

 The parameters redIn, greenIn, and blueIn are external signals (buses) connected
to the input ports of the core. The parameter grayscaleOut is a signal connected to the
output port of the core. The size of the input and output buses is checked in the con-
structor with the CheckParameters() method. If the size of the input and output buses is
different than 8, the CoreParameterException exception is thrown.
 Setting the external characteristics of the core consists in the following steps:

• Assigning an instance name to the core. This is done by calling the superclass
constructor super():

 super (instanceName);

• Creating the ports and connecting external signals to these ports. For this step,
the newInputPort() and newOutputPort() methods are used:

 clkPort = newInputPort ("CLK", clk);
 redPort = newInputPort ("Red", redIn);
 grayscaleOutPort = newOutputPort ("GrayScale", grayscaleOut);

• Setting the dimensions and granularity of the core. This is done by calling the
setWidth(), setHeight(), setWidthGran(), and setHeightGran() methods:
SetWidth (calcWidth());
SetHeightGran (calcHeightGran());

 3.4. Implementing the Core

 A core may be implemented only after it has been placed by the application that
called the core’s constructor. The core is placed by assigning the core’s relative offset.
Finally, the implement() method is called. For the designed grayscale filter, the imple-
ment() method has three parameters, which are the weighting constants for the three

 4 of 6

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

color components. These constants are redWt, greenWt, and blueWt. The operations per-
formed by the implement (int redWt, int greenWt, int blueWt) method of the core are the
following:

• Checking the parameters and computing the scaling factor. The parameters are
checked with the checkParameters (int redWt, int greenWt, int blueWt) method.
The scaling factor is computed by calling the calcScaleFactor() method:

 long scaleFactor = calcScaleFactor (redWt, greenWt, blueWt);

• Creating the buses and the internal connections. A new bus can be created with
the newBus ("BusName", width) method, and an internal connection inside a
core can be created with the newNet("NetName") method. The following frag-
ment shows the creation of some buses and nets used in the GrayFilter core.

 Bus redIn = newBus ("RedIn", redPort.getWidth());
 Bus redMultOut = newBus ("Red Mult Out", 16);
 Net clkNet = newNet ("clk");

• Creating the subcores. The GrayFilter core uses the following types of subcores
defined in the JBits packages: constant, multiplier, adder, register, and bounder.
The following fragment illustrates the creation of subcores for a multiplier and
an adder.
Multiplier redMult = new Multiplier("Red Mult", clkNet,

 redMultConstant, redIn, redMultOut);
Adder rgAdder = new Adder("Red+Green", redMultOut, greenMultOut,

 rgAdderOut);

• Assigning buses and internal signals to ports. An internal signal may be assigned
to a port with the setIntSig(signal) method of the Port class. The signal parame-
ter may be an object of type Bus or Net. The following line assigns the redIn bus
to the redPort port:
redPort.setIntSig (redIn);

• Obtaining the core’s absolute offset. The designed core has CLB granularity,
and therefore only the CLB offset is required. The offset is computed by calling
the calcAbsoluteOffset() method, which returns an instance of the Offset class.
Using this object, the getVerOffset() and getHorOffset() methods may be ac-
cessed to get the vertical and horizontal offset, respectively:
Offset offset = this.calcAbsoluteOffset();
int row = offset.getVerOffset(Gran.CLB);
int col = offset.getHorOffset(Gran.CLB);

• Adding the subcores. This is done by calling the addChild (RTPCore child)
method for each of the subcores created.

• Setting the location of the subcores. This location is relative to the location of
the parent core. First, the relative position of each subcore is obtained by calling
the getRelativeOffset() method, and then the vertical and horizontal offsets are
set by calling the setVerOffset() and setHorOffset() methods. Finally, the loca-
tion of each subcore is set with the place() method:
private void place (RTPCore core, int verCLB, int horCLB)

• Implementing the subcores. After adding and placing a subcore, the implement()
method is called for that subcore.

 5 of 6

A&QT-R 2004 (THETA 14)
2004 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

• Routing buses and internal connections. The Bitstream.connect(signal) method
is called, where signal is a bus or internal connection. The subcores connected to
the buses or internal connections must be placed and implemented before calling
the routing method.

 4. TESTING THE GRAYSCALE FILTER

 To test the grayscale filter, the GrayFilter core was included into a test program,
and a bitstream file was generated for the filter. This program reads the pixel values of
an image from three BRAM memories and processes the pixels using the GrayFilter
core. The resulting pixel values are stored into a BRAM memory. The pixel values are
then read from this memory, converted into an image and displayed on the screen.
 The operation of the GrayFilter core was tested using the BoardScope debug-
ging tool and the VirtexDS simulator provided by the JBits SDK. BoardScope allows to
graphically examine the operation of FPGA devices on a development board. VirtexDS
allows to test Xilinx Virtex bitstream files without the need for an actual device. The
bitstream generated by the application program was not downloaded to a Virtex FPGA
device, due to several limitations of the current JBits version. For example, a complete
design rule check (DRC) can not be performed with the JBits SDK, and an inappropri-
ate configuration can damage the device.

 5. CONCLUSIONS

 This paper presented the design of a grayscale filter using the JBits package.
First, the advantages of using FPGA devices for image processing were described. Then
the main features of the JBits SDK were summarized. The main steps for designing and
testing the grayscale filter were described.
 The main advantage of the JBits package is that it allows access to all the inter-
nal resources of a Xilinx Virtex FPGA device. Therefore, it is possible to dynamically
and partially reconfigure the FPGA device. The dynamic reconfiguration allows to
modify the filter parameters during run-time, without the need to completely reconfig-
ure the device. A disadvantage of using the JBits package is that the user should be fa-
miliar with the internal architecture of the target device. All the design steps performed
automatically by the traditional design tools must be specified explicitly in the user pro-
gram. Currently, the JBits SDK has several limitations which restrict its use for complex
designs.

 REFERENCES

[1] Goslin, G. R. [1995]. A Guide to Using Field Programmable Gate Arrays

(FPGAs) for Application-Specific Digital Signal Processing Performance. Xilinx
Application Note, http://www.xilinx.com/appnotes/dspguide.pdf.

[2] Kreuger, R. [2000]. Virtex-EM FIR Filter for Video Applications. Xilinx Applica-
tion Note XAPP241 (v1.1), http://www.xilinx.com/xapp/xapp241.pdf.

[3] Sun Microsystems, Inc. [2002]. Java 2 SDK Documentation, Standard Edition,
Version 1.2.2-001.

[4] Xilinx, Inc. [2001]. JBits API Documentation, JBits SDKVersion 2.8.
[5] Xilinx, Inc. [2001]. JBits Tutorial, JBits SDK Version 2.8.

 6 of 6

