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ABSTRACT: One of the most promising implementation of artificial neural networks is 
optoelectronic implementation. Optical interconnections are useful for neural networks as far as 
one can take advantage of the special potential of 3D connection through free space. This paper 
presents an autoassociative memory built for graphic pattern recognition. Neurons 
interconnections are considered to be implemented optically by computer generated holograms 
(CGH). The network functioning was simulated on computer and the paper presents a CGH 
layout for neuron interconnections. 
Keywords: autoassociative memory, optical interconnections, computer generated holograms. 
 

1. INTRODUCTION 

 During last ten years the fields of optoelectronic and neural networks were 
characterized by a great dynamics with remarkable results, very useful for human 
society progress. The two fields are characterized by a great amount of parallelism of 
processes. This paper intends a theoretical survey of the using of optoelectronic 
techniques in the implementation of artificial neural networks, especially in that concern 
the interconnections between neurons. The paper will detail the problems dealing with: 
autoassociative memories, 3D interconnection by CGH, the design of CGH for 
interconnecting the artificial neurons. 
 Some of the fundamental demands for the implementation technologies of neural 
networks are: 

• The used technology must allow the achievement of neurons with non-linear 
transfer functions; 

• Also it have to allow a great amount of connectivity between neurons, possible 
total connectivity; 

• The interconnection of neurons must be realized by variable weights, which will 
be settled during training process; 

• The implementation technology must provide answer times suitable for the field 
of application of the neural network. 

From the functioning point of view, the neural networks have two important 
features: 

• The non-linear processing of information at the neuron level; 
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• The large volume and the height degree of parallelism of neurons 
interconnections. 

 While the non-linear processing is easier to accomplish with electronic devices, the 
interconnections are more efficient if they are optically made. Therefore in electronics-
photonics competition, each area has its advantages and disadvantages. Optics has the 
advantages of large bandwidth, parallelism, electromagnetic noise immunity etc. Still it 
does not provide isolation between input and output like electronic circuits and 
problems in handling photons spots may occur. This is why most approaches use a 
hybrid system, composed of optical and electronic devices in order to implement neural 
networks. This kind of optoelectronic system is shown in figure 1.  
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Fig. 1. Block diagram of an optoelectronic system 
 

 2. THE ARTIFICIAL NEURAL NETWORK MODEL 

 In this section we=ll briefly introduce the main theoretical elements concerning 
associative memories and recurrent neural networks, elements that will be used in 
section 4 in order to build an associative memory for signature recognition. 
 We=ll call >pattern= a multidimensional vector with real components. An 
associative memory is a system that accomplishes the association of p pattern pairs 
ξµ
0Rn, ζµ

0Rm, (µ=1, 2,..., p) so that when the system  is given a new  vector  x0Rn such 
as 

),x(dmin),x(d j

j

i ξξξξ====ξξξξ      (1) 

the system responds with  ζi; in (1) d(a,b) is the distance between patterns a and b. 
The pairs (ξi, ζi), (i= 1,2,... p)  are called prototypes and the association 

accomplished by the memory can be defined as a transformation Φ: Rn À Rm so that ζi = 
Φ(ξi ). The space Ω × Rn of input vectors x is named configuration space and the vectors 
ξi, (i=1,2,...,p) are called attractors or stable points. Around each attractor, there is a 
basin of attraction Bi such   that � x 0 Bi, the dynamics of the network will lead to the 
stabilization of (ξi, , , , ζi) pair. For the autoassociative  memory  ξi = ζi,  (i=1,2,...,p) and 
if some vector x  is nearest  ξi, then Φ(x)=ξi. In section 4 we will use for graphic pattern 
recognition a neural network whose model is presented below. Let=s consider the single-
layer neural network built from totally connected neurons, whose states are given by xi 
0 {-1,1}, i=1,2,... n, (fig.2). We denote: W=[wij,: 1– i, j– n] the weights matrix, θ=[θ1, 
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..., θn]T 
0 Rn the thresholds vector, x (t)=[x1(t), ... xn(t)]T

0 {-1,1}n the network state 
vector. The evolution in time of the network is described by the following dynamic 
equation [5]: 

n1,2,...,=i  ]-(t)xwsgn[=1)+(tx ijij

n

1=j
i θθθθ∑∑∑∑   (2) 

with the convention: 

(t)x=1)+(tx  , 0=-xw iiijij

n

1=j
θθθθ∑∑∑∑    (3) 

where : 

0< xif 1-
0> xif 1 

{=sgn(x)      (4) 
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Fig. 2. Single layer recurrent neural network 
 

 In many situations we may give up the neural network threshold θi and we=ll do 
this whenever it doesn’t affect the results. For the autoassociative memory described in 
this paper, the weight matrix W will be built as follows: 

Given a set of n-dimensional prototype vectors X=[ξ1, ξ2,..., ξp ], we establish 
the synaptic matrix W  and the threshold vector θ, so that the prototype vectors become 
stable points for the associative memory, that is: 

p1,2,...,=i )-sgn(W= ii θξξ     (5) 

where the sgn function is applied to each component of the  argument. 
Several classical rules for determining the weights matrix proved successful in 

time: the >Hebb= rule, the projection rule, the delta projection rule (the gradient method) 
 
 3. OPTICAL INTERCONNECTIONS OF ARTIFICIAL NEURONS 
 
 The implementation of optical interconnections that benefit of the advantage of 
parallelism and speed is connected to the development of parallel computers and optical 
telecommunication systems. Facing the electronic connections, the optical ones have 
greater speed and noise immunity. Also, they can be used at different levels of 
computing: in local area networks, between processors, between processors and 



A&QT-R 2004 (THETA 14) 
2004 IEEE-TTTC - International Conference on Automation, Quality and  

Testing, Robotics 
May 13 – 15,  2004, Cluj-Napoca, Romania 

 

 4 of 6

memories, between a system planes, between devices on a plane and between the 
components of a chip.  
 Into one ideal system every element is connected to the others. In reality, 
depending on the concrete problem and the technological and economical constraints, 
one use only partially interconnections. Depending on application, it is necessary to use 
one special type of interconnections: 

• In optical digital computers is necessary one to one connectivity; 
• In analogue processing or in systolic or cellular implementations are needed 

regularly interconnections, invariant to spatial shift; 
• In neural networks, the strength of connection depends on neuron; the 

connectivity is dense and usually is non-uniform. 
 Optical interconnections can be realized in free space, by optical fiber or by 
integrated optical guides. This kind of interconnections are useful for neural networks as 
far as one can take advantage of the special potential of 3D connection through free 
space. This involves the organizing of the neurons layer in 2D configurations (planar), 
where the optical interconnections realize the desired links between the two planes. A 
certain connection also materializes the synaptic weight corresponding to neuron j from 
input plane and neuron i from output plane (fig. 2). The interconnection network 
accomplishes the following function: 
 

∑∑∑∑ αααα====ββββ
ij

ijkl )j,i(T)l,k(     (6) 
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Fig. 3. Optical interconnection of two neural plans 

 
In order to connect the two-neuron planes one may use computer-generated 

holograms (CGH), which, by light waves diffraction, assure the desired connections. 
Due to the fact that generally the connections differ from neuron to neuron, the 
interconnection system will be a spatial variant system, each point from the input plane 
being connected differently to the output plane. 

 
4. COMPUTER GENERATED HOLOGRAMS (CGH) 

 There are a lot of types of holograms, which are identified by the modality of 
realization or the way the object wave is registered or rebuilt. There is a category of 
holograms, synthesized with the help of the computer and the information registered is 
the result of a process of codification and quantification and not the result of a physical 
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process of interference. These are called synthetically or computer generated holograms 
(CGH-Computer Generated Holograms). These are optic diffractive elements in which 
the diffractive structure was determined on a computer by a mathematical description of 
the wave front to be obtained or by a sampling of this one.   
 The synthesis of a CGH comprises more steps that could be synthesized as 
follows [4], [5], [6]: 

• computation of the amplitude complex distribution in hologram plan from the 
specification of the image to be retraced. 

• codification of the complex amplitude as a real, non-negative function 
• description (display) of the transmittance obtained at the previous item on an 

adapted device. 
• the transfer of the transmittance on an optical material, by photo-reduction in 

the view of generation of the properly hologram.  
The steps above mentioned are displayed in figure 4. 
 

CGH
Complex
amplitude
calculation

Coding Materialization

  
Fig. 4. The main steps in CGH processing. Source [7], p. 29 

  Next we will consider the case of Fourier amplitude holograms  
 

5. EXPERIMENTAL RESULTS  

 We attempted the design an example of interconnection CGH. We considered a 
very simple recurrent network, designed to recognize the graphical patterns in figure 5. 
The network was organized as a plan of 16x16 neurons. In our approach it is necessary 
a CGH for every neuron, to achieve the interconnection of this neuron to all other 
neurons in network. We calculated only one interconnection CGH, from neuron (1,1) to 
the other neurons in network. The method used was “detour phase”, with no error 
correction. Because the amplitude dynamic range resulted after Fourier transform was 
too great, we compressed this dynamic range. The resulting layout is displayed in figure 
6. We developed our own applications to design autoasociative memories and also to 
design CGH starting by interconnection matrix. Using our simulator (SIMREC) we 
theoretically studied the influence of implementation errors on the memory behavior. 

 
Fig. 5. Graphical patterns used as prototypes 

 
6. CONCLUSIONS 

 The interconnections of optoelectronic neuron by means of CGH seem to be a 
useful solution to satisfy the necessity of dense connectivity. There are, nevertheless, 
several problems due to the spatial variant interconnection and to diffraction efficiency. 
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Other problems appear as consequences of errors which can appear in the realization of 
CGH and in optical set-up. The simulations [2] have shown diminished performances of 
the auto associative memory as a result of the random weights deviations from the 
correctly computed values. For the statistical parameters used above the performances’ 
degradation is relatively small, which proves certain insensitivity to those deviations. 
Therefore, the memory appears quite robust, not only in what the noise contained by the 
patterns to be recognized is concerned, but also in relation with the random weights 
deviations. 
 This aspect is to be elucidated in further studies. It would also be useful to 
determine quantitatively the contribution of the errors to the deviation of actual weights 
from accurate ones, in order to state realistic requests for the hardware implementation 
of the auto associative memory. 
 

 
 

Fig. 6. Layout of CGH connecting neuron (1,1) to the other neurons 
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