
A&QT-R 2002 (THETA 13)

2002 IEEE-TTTC International Conference on Automation, Quality and Testing,
Robotics

May 23-25, 2002, Cluj-Napoca, Romania

1

Implementation of a Development System
For Compensation Based Extended Transactions

Dollinger Robert, Hale Aurelian, Madularu Cristian

Technical University of Cluj, Department of Computer Science,
Email: robert.dollinger@cs.utcluj.ro

Abstract – Many Extended Transaction Models (ETMs) have been proposed in order to
overcome the limitations of the classic Flat Transaction Model. Some of these models have been
materialized in the form of function libraries or in prototype implementations. Our point of view
is that the success of an ETM equally depends on the availability of a complete and easy to use
Development System that should facilitate application development in the paradigm of the
given ETM. This paper presents the most important implementation issues of a ComET
(Compensation based Extended Transaction) model based Development System (ComET-DS).
The ComET model is more than a simple extension to the classical transaction concept and it
provides a programming model that seems to be well suited for long-lived and complex
computations. This programming model consists of a coherent control mechanism that is able to
coordinate the execution of several simple transactions. The ComET-DS provides several
development tools, like the graphical script editor and the runtime script debugger and tracer,
that are adapted to this programming model.
Keywords: extended transaction models, complex computations, implementation, development
system.

1. INTRODUCTION
The limitations of the classic Flat Transaction Model stimulated an intense research

activity that resulted in many Extended Transaction Models (ETMs). Some of these
models have been materialized in the form of function libraries or in prototype
implementations [1][2][7]. However, at this moment, there is no available system that
would provide the functionality and tools to develop applications based on one of the
existing ETMs. Our point of view is that the success of an ETM equally depends on the
availability of a complete and easy to use Development System that should facilitate
application development in the paradigm of the given ETM. This paper presents the
most important implementation issues of a ComET (Compensation based Extended
Transaction) model based Development System. The ComET model goes beyond the
simple extension of flat transactions and provides a programming model that seems to
be well suited for long-lived and complex computations. This programming model is
closely related to the ConTract model, from which it is inspired [4][5][6][7][8]. The
ComET programming model is based on a two-level solution for maintaining database
consistency: the lower level consists of ACID transactions (called here steps), while the

A&QT-R 2002 (THETA 13)

2002 IEEE-TTTC International Conference on Automation, Quality and Testing,
Robotics

May 23-25, 2002, Cluj-Napoca, Romania

2

higher level consists of a control mechanism that is able to provide ACID like
properties to the entire application according to a flow of control expressed in a simple
script language. This control mechanism is based on a few concepts like: forward
recovery, compensating transactions, invariants and script execution log [3]. ComET
separates the task of application development in two distinct activities: (1) development
of transaction steps and their compensating transactions at the level of the database
server, (2) development of the ComET script expressing the higher level logic of the
application. The ComET Development System (ComET-DS) is aimed to provide
functionality and assistance needed in all phases of the development of ComET scripts:
editing, testing and debugging. The ComET-DS provides several development tools,
like the graphical script editor and the runtime script debugger and tracer that are
adapted to this programming model.

2. SYSTEM ARCHITECTURE
The implementation of the ComET-DS model follows a strictly modular design. Its

structure is presented in figure 1.

 Manager
 Station Station n

 PT

Lexer&ParserComET Manager

ComET Debuger

Lo
g

Script

Step Server

Network

Lo
ca

l
D

B

Step Server n

Transaction
Manager n

Transaction
Manager

Lo
ca

l
D

B

ExTra Composer

 AI

ComET Client

 UI

ComET Client

Figure 1 ComET-DS Modular Structure
 The system is built around three main modules: ComET Manager, Step Server and
ComET Client, implemented as DCOM services to provide system communication over
the network. The other components, Lexer&Parser, ComET Debugger, ExTra
(Extended Transaction) Composer and Transaction Manager, have the role to serve
these services to accomplish the tasks they were build for. The Application Interface
(AI) is based on a ComET Client, which is a DCOM used by applications to interact
with the ComET system. It can be used to launch and execute scripts by connecting to
the ComET Manager from any station in the network, setting input data and controlling
step by step execution.

AI

A&QT-R 2002 (THETA 13)

2002 IEEE-TTTC International Conference on Automation, Quality and Testing,
Robotics

May 23-25, 2002, Cluj-Napoca, Romania

3

2.1. THE ComET MANAGER
 The main component of the system is the ComET Manager that will receive and
manage all user requests for script execution and control. User requests can came from
two different directions: PT(Programming Tools) and AI(Application Interface). The
ComET Manager guarantees the reliable execution of a started ComET and is
responsible for the forward recovery after a crash. The ComET manager activates the
script interpreter (Lexer&Parser) and performs the management of a global log used to
resume the application in case of a system failure. Another function of the ComET
manager is to guarantee for the execution and commitment of the compensating steps in
case of a system failure or in case a step had failed during its execution. Script
interpretation is done in two phases: a compile phase and an execution phase. A script
has four main sections: (1) step description section, (2) flow control section, (3) context
description section and (4) atomic units of work section.

2.2. THE TRANSACTION MANAGER
This component runs the protocol to implement the low level transactional

semantics. It includes the database that stores the data needed by the application and the
implementation of all the defined steps along with their compensating steps in the form
of stored procedures. It can be any Database Management System (DBMS). In our
approach we use for this component the Microsoft SQL Server. Bellow is a sample of a
step implementation and its corresponding compensating stored procedure:

CREATE PROCEDURE spMoneyTransfer

@source int,
@dest int,
@sum float

AS
IF (SELECT Sum
FROM ClientAccount
WHERE ClientCode = @source) > @sum

BEGIN
UPDATE ClientAccount
SET Sum = Sum - @sum
WHERE ClientCode = @source

UPDATE StoreAccount
SET Sum = Sum + @sum
WHERE StoreCode = @dest

PRINT 'Transfer completed!'
RETURN 1

END
RETURN 0

CREATE PROCEDURE spMoneyTransferComp
@source int,
@dest int,
@sum float,
@err int

AS
IF (@err = 1)

BEGIN
UPDATE ClientAccount
SET Sum = Sum + @sum
WHERE ClientCode = @sursa

UPDATE StoreAccount
SET Sum = Sum - @sum
WHERE StoreCode = @dest
RETURN 0

END
ELSE

PRINT 'Accounts have not been
updated!'

RETURN 1

2.3. THE STEP SERVER
 The Step Server deals with the entire house keeping related to step execution. The
execution of steps is done asynchronously with respect to script execution. It
communicates directly with the ComET Manager to obtain a balanced system load and
to meet system performance requirements, and with the Transaction Manager, calling
the stored procedure implementation of the steps. The Step Server is also responsible
with the interpretation, evaluation and validation of invariants (entry and exit
invariants). Execution of each step is done according to the following algorithm:

 get step information;
 construct, evaluate and validate the entry invariants for the current step;

A&QT-R 2002 (THETA 13)

2002 IEEE-TTTC International Conference on Automation, Quality and Testing,
Robotics

May 23-25, 2002, Cluj-Napoca, Romania

4

 if (entry invariant = TRUE)
3.1. then execute the stored procedure associated to the step and go to 1;
3.2. else execute backward compensation of last committed steps until

the closest point of alternative available choices is reached;
construct, evaluate and validate the exit invariants;
if (exit invariant = TRUE)

5.1. then go to 6;
5.2. else execute the compensation stored procedure of to the current step

and execute backward compensation of last committed steps until
the closest point of alternative available choices is reached;

save the step context to the global context an go to 1.

3. THE GRAPHICAL SCRIPT EDITOR (ExTra Composer)
The graphical script editor provides two main functions: (1) script design and

generation through a user-friendly graphical interface (direct engineering) and (2)
reverse engineering of an existing script. The graphical editor is a powerful tool for easy
and effective developing of ComET scripts. It provides the functionality needed to
describe all the components of a script: global variables and synonyms definition, step
definitions, control flow, context etc. Each script element is associated a representative
graphical symbol. These symbols are interconnected according to the script structure
and control flow. One can move around, resize, modify or delete any of these symbols.
The properties of a script element can be set or modified by double clicking the
corresponding symbol and editing the properties exposed by the interface. Figure 2
shows a small example of a visual representation and script generation.

Figure 2 Graphical script-editing example

A&QT-R 2002 (THETA 13)

2002 IEEE-TTTC International Conference on Automation, Quality and Testing,
Robotics

May 23-25, 2002, Cluj-Napoca, Romania

5

The first step the script-programmer should consider when defining a new script is the
variables and synonyms definition. This is followed by the creation of the steps and of
the control flow instructions. Finally, the CONTEXT section is automatically generated.
Part of the generated script for the example in figure 2 is shown bellow:

STEP_DEFINITIONS:
STEP:
TRANZACTION:

WaitClient(OUT_P INTEGER Client);
COMPENSATOR: DoNothing();
INVARIANTS:

EXIT_I:
 EXITPOLICY:
 ENTRY_I:

ENTRYPOLICY:

 ...

STEP:
TRANZACTION:

MoneyTransfer(IN_P INTEGER
 Client, INTEGER Store, FLOAT Sum);
COMPENSATOR: MoneyTransfer ();
INVARIANTS:

EXIT_I: ClientAccount < Sum
 EXITPOLICY:
 ENTRY_I: ClientAccount > Sum
 ENTRYPOLICY:
END_STEPS

CONTROL_FLOW_SCRIPT
S1: WaitClient(OUT_P Client);
S2: SelectProduct(IN_P Client;

OUT_P Product);
S3: UpdateClient(IN_P Client;);
S4: SelectStore(IN_P Product; OUT_P Store);

WHILE(Store)
{
 S5: UpdateDemands(IN_P Client,

Product;OUT_P bUpdate);
 if(OK[S5])
 S6: MoneyTransfer (IN_P Client, Store,

 Sum);
 Store = Store->NEXT;
}
END_CONTROL_FLOW_SCRIPT

CONTEXT

S1->S2
 S1->S3
 S1,S3->S4
 S3->S5
 S1,S5->S6
END_CONTEXT

The reverse engineering component of the ComET composer offers the possibility to
generate a graphical representation, through reverse engineering, of an already existing
script.

4. SCRIPT DEBUGGER AND TRACER
This tool is developed to test the correctness of ComET scripts. It’s a visual tool

designed to offer support for checking Script correctness on runtime. It allows the user
to visualize in a graphical way the current step of a script execution.
The script debugger and tracer provides functions like:

- interaction with the user for setting data input for the current step;
- setting breakpoints (F9) on any step of a script and watch step’s variables after
executing it, by expanding tree control knots;
- step by step execution(F10);
- executing script’s steps from one breakpoint to another(F5);
- immediate invariant evaluation.

The steps of the executing script are visualized in a tree structure having
associated a knot component to each step. These components will permanently be filled
with current context values of each the corresponding step. The context can have
different representation according to the step type. If type of the step is while or if then

A&QT-R 2002 (THETA 13)

2002 IEEE-TTTC International Conference on Automation, Quality and Testing,
Robotics

May 23-25, 2002, Cluj-Napoca, Romania

6

the knots are generated dynamically and will be represented in the tree control as new
instances of original knot, one instance for each iteration on the same step or new
instance of it. This is a valuable feature that allows examining not only the current
context of a step execution, but also its execution history. Also, when backtracking one
can follow the dynamic changes in the tree control as each knot instance is deleted once
the corresponding step is compensated for. This feature provides an intuitive
representation of how things happen internally during execution of a ComET script.
Also, one can set breakpoints from the tree control by right clicking on a knot and
selecting the breakpoint option.

6. CONCLUSIONS
 The most important contribution of this work consists in the development of a
system architecture that allows a flexible, modular and extensible implementation of a
ComET-DS. This modular structure makes easy further developments that would add
new or modify existing functionality. The script development tools provided to the
ComET application developers proved to be simple to use and effective in increasing
the efficiency of the entire development process from design to testing and runtime
debugging. Several test application where successfully developed in order to validate
the system’s effectiveness.

 REFERENCES
[1] Anwar,E., Chakravarthy,S., Viveros,M. {1997} – An Extensible Approach To

Realizing Advanced Transaction Models”, in: “Advanced Transaction Models
and Architectures”, Kluwer Academic Publishers, 1997, pp.259-276;

[2] Birilis,A., Dar,S., Gehani,N., Jagadish,H.V., Ramamritham,K. {1994} – “ASSET: A
System for Supporting Extended Transactions, in: Proc. of the ACM SIGMOD
Int’l Conf. on Management of Data, Minneapolis, USA, Minn. June 1994;

[3] Dollinger,R. {2002} - “Database Transaction Model for Advanced Applications”,
in: Proceedings of IASTED International Conference on Applied Informatics,
AI’2002, 18-21 Feb.2002, Innsbruck, 2002;

[4] Reuter,A., Schneider,K., Schwenkreis,F. {1997} – “ConTracts Revisited”, in:
“Advanced Transaction Models and Architectures”, Jajodia,S. and
Kerschberg, L., eds., Kluwer Academic Publishers, USA, 1997, pp.127-151;

[5] Reuter,A., Schwenkreis,F. {1993} – “ConTracts – A Low-Level Mechanism for
Building General-Purpose Workflow Management-Systems”, in: Bulletin of the
Technical Commmittee on Data Engineering, Vol.18, No.1, IEEE Computer
Society;

[6] Reuter,A.,Wachter,H.{1992} – “The ConTract Model”, in: ”Database Transaction
Models for Advanced Applications”, Elmargamid,A.K. ed., Morgan Kaufman
Publishers, Inc., USA, 1992, pp.229-263;

[7] Schwenkreis,F. – “APRICOTS – A Prototype Implementation of a ConTract System
– Management of the Control Flow and the Communication System”, in: Proc.
Of the 12th Symposium on Reliable Distributed Systems, Princeton (NJ), 1993;

[8] Schwenkreis,F., Reuter,A. – “The Impact of Concurrency Control on the
Programming Model of ConTracts”, available from:
http://www.informatik.uni-stuttgart.de/ipvr/as/personen/{reuter,schwenk}.html

	Implementation of a Development System
	For Compensation Based Extended Transactions
	Dollinger Robert, Hale Aurelian, Madularu Cristian

	Abstract – Many Extended Transaction Models (ETMs) have been proposed in order to overcome the limitations of the classic Flat Transaction Model. Some of these models have been materialized in the form of function libraries or in prototype implementation
	2.2. THE TRANSACTION MANAGER
	2.3. THE STEP SERVER

