
1 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing,

Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

PATH PLANNING IN AN UNKNOWN ENVIRONMENT

Radu Robotin and Gheorghe Lazea

Department of Automation, Technical University of Cluj-Napoca,
C. Daicoviciu str. 15, 3400 Cluj-Napoca, ROMANIA

E-mail: {Radu.Robotin,Gheorghe.Lazea}@aut.utcluj.ro

Abstract: The research literature has addressed extensively the motion planning
problem for one or more robots moving through a field of obstacles to a goal. Most of this work
assumes that the environment is completely known before the robot begins its traverse. The
optimal algorithms in this literature search a state space (e.g., visibility graph, grid cells) using
the distance transform or heuristics to find the lowest cost path from the robot’s start state to the
goal state. Cost can be defined to be distance traveled, energy expended, time exposed to
danger, etc. This paper presents the D* algorithm for generating optimal paths for a robot
operating with a sensor and a map of the environment. The robot’s sensor is able to measure arc
costs in the vicinity of the robot, and the known and estimated arc values comprise the map.
Thus, the algorithm can be used for any planning representation, including visibility graphs and
grid cell structures. The paper describes the algorithm, illustrates its operation, presents our
approach for implementation, and then concludes with an proof of operation.

Keywords: mobile robot, replanning, dynamic environment, planning algorithm

1. INTRODUCTION

The problem of path planning can be stated as finding a sequence of state
transitions through a graph from some initial state to a goal state, or determining that no
such sequence exists. The path is optimal if the sum of the transition costs, also called
arc costs, is minimal across all possible sequences through the graph. If during the
“traverse” of the path, one or more arc costs in the graph is discovered to be incorrect,
the remaining portion of the path may need to be replanned to preserve optimality. The
states in the graph are robot locations, and the arc values are the costs of moving
between locations, based on some metric such as distance, time, energy expended, risk,
etc. The robot begins with an initial estimate of arc costs comprising its “map”, but
since the environment is only partially-known or changing, some of the arc costs are
likely to be incorrect. As the robot acquires sensor data, it can update its map and replan
the optimal path from its current state to the goal. It is important that this replanning be
fast, since during this time the robot must either stop or continue to move along a
suboptimal path. A number of algorithms exist for producing optimal traverses given
changing arc costs. One algorithm plans an initial path with A* [3] or the distance
transform [Jarvis, 1985] using the prior map information, moves the robot along the
path until either it reaches the goal or its sensor discovers a discrepancy between the

2 of 6

map and the environment, updates the map, and then replans a new path from the
robot’s current state to the goal [5]. The limitation of these algorithms is that the entire
affected portion of the map must be repaired before the robot can resume moving and
subsequently make additional corrections. Thus, the algorithms are inefficient when the
robot is near the goal and the affected portions of the map have long “shadows”. Stentz
[4] overcomes these limitations with D*, an incremental algorithm which maintains a
partial, optimal cost map limited to those locations likely to be of use to the robot.
Likewise, repair of the cost map is generally partial and re-entrant, thus reducing
computational costs and enabling real-time performance. Other algorithms exist for
addressing the problem of path planning in unknown or dynamic environments but these
algorithms emphasize fast operation and/or low memory usage at the expense of
optimality.

This paper describes an extension to D* which focuses the cost updates to
minimize state expansions and further reduce computational costs. The algorithm uses a
heuristic function similar to A* to both propagate cost increases and focus cost
reductions. A biasing function is used to compensate for robot motion between
replanning operations.

2. DEFINITIONS AND FORMULATIONS

We begin with the notation and definitions used in Stentz [4]. The problem
space can be formulated as a set of states denoting robot locations connected by
directional arcs, each of which has an associated cost. The robot starts at a particular
state and moves across arcs (incurring the cost of traversal) to other states until it
reaches the goal state, denoted by G. Every visited state except G has a backpointer to a
next state denoted by b(X)=Y. D* uses backpointers to represent paths to the goal. The
cost of traversing an arc from state to state is a positive number given by the arc cost
function c(X,Y). If Y does not have an arc to X , then c(X,Y) is undefined. Two states X
and Y are neighbors in the space if c(X,Y) or c(Y,X) is defined.

D* uses an OPEN list to propagate information about changes to the arc cost
function and to calculate path costs to states in the space. Every state X has an
associated tag t(X), such that if X has never been on the list t(X)=NEW, if X is currently
on the list t(X)=OPEN, and if X is no longer on the list t(X)=CLOSED. For each visited
state X, D* maintains an estimate of the sum of the arc costs from X to G given by the
path cost function h(X). Given the proper conditions, this estimate is equivalent to the
minimal cost from state X to G. For each state X on the OPEN list (i.e., t(X)=OPEN),
the key function, k(X), is defined to be equal to the minimum of h(X) before
modification and all values assumed by h(X) since X was placed on the OPEN list. The
key function classifies a state X on the list into one of two types: a RAISE state if
k(X)<h(X), and a LOWER state if k(X)=h(X). D* uses RAISE states on the OPEN list to
propagate information about path cost increases and LOWER states to propagate
information about path cost reductions. The propagation takes place through the
repeated removal of states from the list. Each time a state is removed from the OPEN
list, it is expanded to pass cost changes to its neighbors. These neighbors are in turn
placed on the OPEN list to continue the process.

States are sorted on the OPEN list by a biased f(�) value, given by fB(X,Ri), where
X is the state on the OPEN list and Ri is the robot’s state at the time X was inserted or
adjusted on the OPEN list. Let � �NRRR ,,, 10 � be the sequence of states occupied by
the robot when states were added to the OPEN list. The value of fB(�)is given by

),(),(),(0RRdRXfRXf iiiB �� where f(�) is the estimated robot path cost given by

3 of 6

),()(),(1��� iii RRgXhRXf and d(�)is the accrued bias function given by
������

�

),(),(),(),(112010 iii RRgRRgRRgRRd � if 0�i and 0),(00 �RRd if
0�i .

The function g(X,Y) is the focussing heuristic, representing the estimated path
cost from Y to X. The list states are sorted by increasing fB(�) value, with ties in fB(�)
ordered by increasing f(�), and ties in f(�) ordered by increasing k(�). Ties in k(�) are
ordered arbitrarily. Thus, a vector of values � � � � � ���� kff B ,, is stored with each state
on the list. Whenever a state is removed from the OPEN list, its f(�) value is examined to
see if it was computed using the most recent focal point. If not, its f(�) and fB(�) values
are recalculated using the new focal point and accrued bias, respectively, and the state is
placed back on the list. Processing the fB(�) values in ascending order ensures that the
first encountered f(�) value using the current focal point is the minimum such value,
denoted by fmin. Let kval be its corresponding k(�) value. These parameters comprise an
important threshold for D*. By processing properly-focussed f(�) values in ascending
order (and k(�) values in ascending order for a constant f(�) value), the algorithm ensures
that for all states X, if min)(fXf � or (min)(fXf � and valkXh �)(), then h(X) is
optimal. The parameter val is used to store the vector valkf ,min for the purpose of this
test.

3. ALGORITHM DESCRIPTION

The D* algorithm consists primarily of three functions: PROCESS_STATE,
MODIFY_COST, and MOVE_ROBOT. PROCESS_STATE computes optimal path
costs to the goal, MODIFY_COST changes the arc cost function and enters affected
states on the OPEN list, and MOVE_ROBOT uses the two functions to move the robot.
The algorithms for PROCESS_STATE, and MOVE_ROBOT are presented below. The
embedded routines are: MIN(a,b) returns the minimum of the two scalar values a and b;
LESS(a,b) takes a vector of values 21 , aa for a and a vector 21 ,bb for b and returns
TRUE if a1<b1 or (a1=b1 and a2<b2); LESSEQ takes two vectors a and b and returns
TRUE if a1<b1 or (a1=b1 and a2<=b2); COST(X) computes

),()(),(currcurr RXGVALxhRXf �� and returns the vector of)(),,(XhRXf curr values
for a state X; DELETE(X) deletes state X from the OPEN list and sets t(X)=CLOSED;
PUT_STATE(X) sets t(X)=OPEN and inserts X on the OPEN list according to the vector

� � � � � �XkXfXf B ,, ; GET_STATE returns the state on the OPEN list with minimum
vector value (NULL if the list is empty).

In function PROCESS_STATE cost changes are propagated and new paths are
computed. At lines L1 through L3, the state X with the lowest f(�) value is removed
from the OPEN list. If X is a LOWER state (i.e., k(X)=h(X)), its path cost is optimal. At
lines L8 through L13, each neighbor Y of X is examined to see if its path cost can be
lowered. Additionally, neighbor states that are NEW receive an initial path cost value,
and cost changes are propagated to each neighbor Y that has a backpointer to X,
regardless of whether the new cost is greater than or less than the old. Since these states
are descendants of X, any change to the path cost of X affects their path costs as well.
The backpointer of Y is redirected, if needed. All neighbors that receive a new path cost
are placed on the OPEN list, so that they will propagate the cost changes to their
neighbors.

4 of 6

Function PROCESS_STATE ()
L1 X=MIN_STATE()
L2 if X=NULL then return NO_VAL
L3 val=<f(X),k(X)>; kval=k(X); DELETE(X)
L4 if kval<h(X) then
L5 for each neighbor Y of X
L6 if t(Y)!=NEW and

LESSEQ(COST(Y),val) and
h(X)>h(Y)+c(Y,X)
then

L7 b(X)=Y; h(X)=h(Y)+c(Y,X)
L8 if kval=h(X) then
L9 for each neighbor Y of X
L10 if t(Y)=NEW or
L11 (b(Y)=X and h(Y)!=h(X)+c(X,Y)) or
L12 (b(Y)!=X and h(Y)>h(X)+c(X,Y))

then

L13 b(Y)=X; INSERT(Y,h(X+c(X,Y))
L14 else
L15 for each neighbor Y of X:
L16 if t(Y)=NEW or
L17 (b(Y)=X and h(Y)!=h(X)+c(X,Y)) then
L18 b(Y)=X; INSERT (Y,h(X)+c(X,Y))
L19 else
L20 if b(Y)!=X and h(Y)>h(X)+c(X,Y) and
L21 t(X)=CLOSED then
L22 INSERT(X,h(X))
L23 else
L24 if b(Y)!=X and h(X)>h(Y)+c(Y,X)
L25 and t(Y)=CLOSED and
L26 LESS(val,COST(Y)) then
L27 INSERT (Y,h(Y))
L28 return MIN_VAL()

If X is a RAISE state, its path cost may not be optimal. Before X propagates cost
changes to its neighbors, its optimal neighbors are examined at lines L4 through L7 to
see if h(X) can be reduced. At lines L15 through L18, cost changes are propagated to
NEW states and immediate descendants in the same way as for LOWER states. If X is
able to lower the path cost of a state that is not an immediate descendant (lines L20
through L22), is placed back on the OPEN list for future expansion. This action is
required to avoid creating a closed loop in the backpointers [4]. If the path cost of X is
able to be reduced by a suboptimal neighbor Y (lines L24 through L27), the neighbor is
placed back on the OPEN list. Thus, the update is “postponed” until the neighbor has an
optimal path cost.

The function MOVE_ROBOT illustrates how to use PROCESS_STATE and
MODIFY_COST to move the robot from state S through the environment to G. At lines
L1 through L4, t(*) is set to NEW for all states, the accrued bias and focal point are
initialized, h(G) is set to zero, and G is placed on the OPEN list. PROCESS_STATE is
called repeatedly at lines L6 and L7 until either an initial path is computed to the robot’s
state (i.e., t(S)=CLOSED) or it is determined that no path exists (i.e., val=NO_VAL and
t(S)=NEW). The robot then proceeds to follow the backpointers until it either reaches
the goal or discovers a discrepancy (line L11) between the sensor measurement of an
arc cost and the stored arc cost (e.g., due to a detected obstacle). Note that these
discrepancies may occur anywhere, not just on the path to the goal. If the robot moved
since the last time discrepancies were discovered, then its state R is saved as the new
focal point, and the accrued bias, dcurr, is updated (lines L12 and L13). MODIFY_COST
is called to correct c(*) and place affected states on the OPEN list at line L15.
PROCESS_STATE is then called repeatedly at line L17 to propagate costs and compute
a new path to the goal. The robot continues to follow the backpointers toward the goal.

Function MOVE_ROBOT (S,G)
L1 for each state X in the graph:
L2 t(X)=NEW
L3 dcurr=0; Rcurr=S
L4 INSERT(G,0)
L5 val=<0,0>
L6 while t(S)!=CLOSED and

val!=NO_VAL
L7 val=PROCESS_STATE()
L8 if t(S)=NEW then return NO_PATH
L9 R=S
L10 while R!=G

L11 if s(X,Y)!=c(X,Y) for some (X,Y) then
L12 if Rcurr!=R then
L13 dcurr=dcurr+GVAL(R,Rcurr)+e;

Rcurr=R
L14 for each (X,Y) such that

s(X,Y)!=c(X,Y):
L15 val=MODIFY_COST(X,Y,s)
L16 while LESS(val,COST(R))

and val!=NO_VAL
L17 val=PROCESS_STATE()
L18 R=b(R)
L19 return GOAL_REACHED.

5 of 6

It should be noted that line L8 in MOVE_ROBOT only detects the condition
that no path exists from the robot’s state to the goal if, for example, the graph is
disconnected. It does not detect the condition that all paths to the goal are obstructed by
obstacles. In order to provide for this capability, obstructed arcs can be assigned a large
positive value of OBSTACLE and unobstructed arcs can be assigned a small positive
value of EMPTY. OBSTACLE should be chosen such that it exceeds the longest possible
path of EMPTY arcs in the graph. No unobstructed path exists to the goal from S if

OBSTACLESh �)(after exiting the loop at line L6. Likewise, no unobstructed path
exists to the goal from a state R during the traverse if OBSTACLERh �)(after exiting
the loop at line L16. Since currRR � for a robot state R undergoing path recalculations,
then 0),(�RRg and)(),(RhRRf � .

4. IMPLEMENTATION

The above-presented algorithm was implemented on a Pioneer 2 mobile robot,
equipped with 8 range finding sensors. We have used client-server architecture, with
P2OS operating system on robot’s microcontroller, and Saphira routines for the client
on a PC workstation. The software was implemented using Microsoft Visual C++, and
Saphira OS functions.

In order to perform obstacle detection, Saphira provides occupancy functions.
These functions look at the raw sonar readings to determine if an obstacle is near the
robot. Other Saphira interpretation micro-tasks use the sonar readings to extract line
segments representing walls and corridors. Saphira has several functions for testing
whether sonar readings exist in areas around the robot. The different functions are
useful in different types of obstacle-detection routines; for example, when avoiding
obstacles in front of the robot, it’s often useful to disregard readings taken from the side
sonars. The detection functions come in two basic types: box functions and plane
functions. Box functions returns obstacles in a rectangular region in the vicinity of the
robot, while plane functions look at a portion of a half-plane.

5. RESULTS, CONCLUSION AND FUTURE WORK

The goal of this project was to provide a navigation system that will allow
Pioneer mobile robot to explore an unknown terrain without the benefit of an a priori
map. This exploration is collision free, as long as the robot’s ultrasonic sensors detect
the obstacles. There are some cases when the software + hardware (ultrasonic sensors)
cannot cope with the environment (e.g., the robot cannot detect chairs legs or other
obstacles thinner than 4-5 cm). When a collision occurs, the bump behavior will drive
the robot back followed by a detour.

The figures below illustrate the path planning in a clutter environment. An
optimistic map of the environment in figure 1 was used. The robot moves from the start
point S in the left towards the goal point G and discovers the obstacles in the
environment as depicted in figure 2. No a priori information was available.

6 of 6

Figure 1. Environment used for simulation . Figure 2. The resulting robot path.

The algorithm can handle the complete spectrum of a priori maps, from accurate
maps to absence of map information. The future work plans to compensate and
eliminate some of the disadvantages of the current approach: the current implementation
of D* algorithm can be improved, especially by using arc costs ranging over a
continuum. Also it can be provided a focussing heuristic which will improve the speed
performance by reducing the number of searched states. The actual implementation can
be inefficient especially when there are series of detected obstacles in the near vicinity
of the robot. This drawback can be compensated by using an arbiter which will decide
what motor commands are more important in some given conditions: the output of the
path-planning routine, or the output of the obstacle avoidance routine. At this point we
are looking at the possibility of representing the detected environment in the Saphira
Navigation Display, since this feature in not supported

6. REFERENCES

[1] Latombe, J.-C.,(1991). Robot Motion Planning, Kluwer Academic
Publishers, ISBN 0-7923-9206-X, Boston MA.

[2] Lumelsky, V. J.; Mukhopadhyay, S. & Sun, K., (1990).”, IEEE Transactions
on Robotics and Automation, Vol. 6, No. 4.

[3] Nilsson, N. J., (1980). Principles of Artificial Intelligence, Tioga Publishing
Company, ISBN 3-540-11340-1, Palo Alto CA.

[4] Stentz, A.,(1994). Optimal path planning for partially known environments,
Available from: http://www.frc.ri.cmu.edu/~axs/ Accessed: 2000-12-10.

[5] Zelinsky, A.,(1992). A Mobile Robot Exploration Algorithm, IEEE
Transactions on Robotics and Automation, Vol. 8, No. 6, pp 703 – 717.

[6] *** , Saphira User Manual, ActivMedia Robotics, 1998.

	A&QT-R 2002 (THETA 13)
	2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics
	May 23 – 25, 2002, Cluj-Napoca, Romania
	PATH PLANNING IN AN UNKNOWN ENVIRONMENT
	Radu Robotin and Gheorghe Lazea

