
A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

DISTRIBUTED BUILT-IN SELF-TEST ADMINISTRATION
USING MOBILE/WAP ACCESS

L. Miclea, Enyedi Sz.

Technical University of Cluj-Napoca, Automation Department

Bariţiu str. 26-28, Cluj-Napoca, Romania

Liviu.Miclea@aut.utcluj.ro, Szilard.Enyedi@aut.utcluj.ro

Abstract

This paper presents the idea and experimental results on distributed built-in self-test (DBIST)
administration, using a combination of Web technologies, PHP scripting and WAP mobile data
access. The devices and tests are selected on an electronic WAP form, in a WAP microbrowser
of a mobile device. The WAP browser then sends the selections to the DBIST web server,
through the WAP gateway. The server uses PHP scripts to start the selected tests on the selected
devices. The scripts use TCP/IP to communicate with the BIST modules of the devices. The
BIST modules run the required tests and return the results to the scripts, which generate a WML
page with the test results and send it back to the requesting mobile device’s microbrowser.

In the version presented here, the PHP scripts generate a human-readable “test results” WML
page, but in future implementations, they can use raw TCP/IP or other protocols to
communicate with a central administrative authority, other DBIST networks or mobile
networks, interact with SQL databases or do other high or low level test configuration/test
results management.

Keywords: BIST, DBIST, WAP, PHP, TCP/IP

1. INTRODUCTION

1.1. Generalities

This paper continues the work [1] of the authors for developing solutions for DBIST
systems. This paper, however, presents a different approach. The test selection, running
and displaying the results is accomplished through the aid of a Web server, PHP
scripting, on-the-fly WML pages and a WAP-enabled microbrowser in a mobile device.

1 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

In the following, we will present some basics of the concepts, and then a simple
example to illustrate the idea.

1.2. DBIST

Built-in self-test has been around for quite a while. One of the current trends in BIST
technology is Distributed BIST, or DBIST. The distributed nature of DBIST means that
each of the modules in the DUT has its own BIST routine, which runs the test more or
less independently from the other modules. This way, the actual BIST of the whole
device is decomposed into smaller, dedicated BISTs, which should be simpler and
easier to develop and maintain.

1.3. PHP

1.3.1. Generalities

PHP (Personal Homepage Preprocessor) is a scripting language, used mostly on web
servers. The idea is that the PHP commands are embedded in the HTML file itself.
When a browser requests a page from the web server, the server first runs the PHP
interpreter on the requested file, and then sends the results to the requesting browser.

1.3.2. Example

<html>
<body>
<?php
echo "This comes from the PHP script.
";
?>
</body>
</html>

When the above example is parsed by the server’s PHP engine, the <?php … ?> tag is
replaced by the result of the contained PHP commands, i.e. by the string “Test
text.
”. Only then is the resulted page sent to the browser that requested it.

1.4. WAP

The mobile communications industry invented WAP (Wireless Access Protocol), a
way through which mobile devices, for example mobile phones, can request and display
information from the Internet.

Through the WAP protocol, these devices can access and display WML (Wireless
Markup Language) pages, which are very similar to HTML pages. Still, WML pages
have less detail and are optimized for the monochrome and small display of the mobile
devices. Such a WAP-enabled device contains a WAP microbrowser that can parse and
display WML pages.

1.5. WML

WML files are called “decks”, and the decks are composed of “cards”. WML is an
XML language, with markups, like HTML, but the markups are different from those in
HTML.

1.5.1. Example

The code below is WML code for a deck that contains a single card:

2 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

<wml>
<card title="Input">
<p>
Name: <input name="Name" size="15"/>

Age: <input name="Age" size="15" format="*N"/>

Sex: <input name="Sex" size="15"/>
</p>
</card>
</wml>

And the corresponding page in the microbrowser:

----- Input ----------

Name:

Age :

Sex :

Figure 1 – A simple form as displayed in a WAP/WML microbrowser.

1.5.2. PHP and WML

Socket

Web Server

Web

Web

WAP provider

WAP Gateway

Microbrowser

Mobile device

PHP BIST

Figure 2 – The structure of the DBIST system using WML/WAP and PHP

The steps of the DBIST process:
• The microbrowser requests from the WAP provider the page containing the

PHP script on the specified web server;
• The WAP provider connects to the specified web server and transmits the

request as it was from a normal desktop browser;
• The web server (actually, the PHP script) creates on the fly the WML form and

sends it to the WAP provider, which sends it further to the mobile device;

3 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

• The user fills the data in the form and sends it back to the WAP provider,
which sends it to the web server;

• The PHP script on the server opens a TCP/IP socket, connects to the specified
BIST module of the specified device and sends it the user-requested test;

• The contacted BIST module runs the requested test and returns the results to
the script, through the same TCP/IP connection;

• The script generates the results WML page and sends it to the WAP provider,
which forwards it to user’s browser, where it is displayed.

2. IMPLEMENTATION AND EXPERIMENTS

2.1. The experimental BIST module

The BIST module [1] we used for experimenting is a software module. It accepts
commands that start the BIST tests – check the available space, share name etc. of the
drives.

Figure 3 – The BIST module’s graphical interface

The commands are expected in ASCII format, on TCP/IP socket no. 2811. Only
known commands are executed, the unknown ones are sent back to the requesting agent.

The BIST module executes the requested test and sends back the results on the same
port on which the command arrived.

2.2. The PHP script and the WML pages

The PHP script creates the WML form, manages the DBIST testing system and also
generates the results WML page.

The code that generates the WML form:

4 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

echo "<anchor>";
echo "Send";
echo "<go href=\"$PHP_SELF\" method=\"POST\">";
//POST variables to send back
echo "<postfield name=\"addr\" value=$(addr)/>";
echo "<postfield name=\"test\" value=$(test)/>";
echo "</anchor>"; //closing the "refresh" and "go" block

Note that we have to specify, for the microbrowser, the data which is to be sent back
to the server, using the <postfield> tag. An HTML browser knows how to do this
automatically.

We will focus on the BIST connectivity part below.

We try to connect to the BIST module at the address specified in the returned form,
port 2811:

$fp = fsockopen ($addr, 2811);

If connection was successful, send the user-requested test name to the BIST module,
all uppercase:
fputs ($fp, strtoupper($test).".");

Receive the test result from the BIST module, maximum 128 characters; append to the
result string as we receive, until the transmission end character (“.”) is met; the “.” (dot)
operator is string concatenation in PHP (which is, coincidentally, the same as the
end-of-transmission character we chose):

$recvd = fgets ($fp,128);
while (!preg_match("/(\.)/",$recvd))

{ $recvd = $recvd . fgets ($fp,128); }

Put the received result into the generated web page:

echo "<big>$recvd</big>";

Close the connection to the BIST module:
fclose ($fp);

3. CONCLUSIONS

In this paper, we presented a DBIST architecture that uses PHP scripts to let the user
select the tests remotely, from a WAP-enabled mobile device. The scripts generate the
WML form, transport the user selection to the BIST modules through TCP/IP and give
the test results back to the user’s mobile device. A simple example that shows the basic
idea has been discussed.

5 of 6

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

PHP offers high flexibility, and rapid development, since all that is required from the
BIST modules is TCP/IP and ASCII-based communication. Furthermore, PHP is very
similar to C, so the learning curve for senior developers is fast, offering a convenient
way for Web-enabled DBIST management. The possibilities are wide.

WML/WAP is the standard markup language for Internet content on mobile devices,
therefore it is device-independent.

On the other hand, since PHP is an interpreted language, it is slower than native,
compiled/linked binaries. But the speed overhead is not in the scripts, but in the BIST
modules themselves; however, even these BIST routines are rarely called, compared to
the normal functioning of the device. Another limitation may be the need for a web
server, although tiny embedded web servers are becoming a one- or two-chip
commercial product.

Another drawback is that if the mobile device does not have a convenient keyboard, it
is compulsory to use selection-based form elements.

A future – necessary – improvement is user authentication.

4. REFERENCES

1. L.Miclea, Enyedi Sz., R. Orghidan, (2001), “On-line BIST Experiments for
Distributed Systems”, IEEE European Test Workshop ETW'2001, Stockholm,
Sweden, May 29th–June 1st, , pp. 37-39.

2. L. Miclea, Enyedi Sz., H. Vălean, (2000), “Remote Data Acquisition and Control
Using Programmable Structures”, Proceedings of International Conference on
Quality, Automation and Robotics Q&A-R 2000, Cluj- Napoca, Romania, 19th–
20th May, 2000, Tome 2, pp. 425-430.

3. Monica Lobetti Bodoni, A. Benso, S. Chiusano, G. di Natale, P. Prinetto, (2000),
“An Effective Distributed BIST Architecture for RAMs”, Informal Digest of IEEE
European Test Workshop ETW 2000, pp. 201-206

4. R. Pendurkar, A. Chatterjee, Y. Zorian, (1996), “A Distributed BIST Technique for
Diagnosis of MCM Interconnections”, International Test Conference 1996
Proceedings, pp. 214-221

5. Y. Zorian, H. Bederr, (1996), “Designing Self-Testable Multi-Chip Modules”,
European Design and Test Conference 1996 Proceedings, pp. 181-185

6. ***, “PHP Manual”, (2002), http://www.php.net/docs.php

7. ***, “WAP Tutorial”, (2001), http://www.w3schools.com

6 of 6

http://www.php.net/docs.php
http://www.w3schools.com/

	INTRODUCTION
	Generalities
	DBIST
	PHP
	Generalities
	Example

	WAP
	WML
	Example
	PHP and WML

	IMPLEMENTATION AND EXPERIMENTS
	The experimental BIST module
	The PHP script and the WML pages

	CONCLUSIONS
	REFERENCES

