
A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

1 of 6

A BETTER REPRESENTATION FOR CLASS RELATIONSHIPS IN

UML USING OFL META-INFORMATION

Dan Pescaru (*), Philippe Lahire (**), Ciprian Chirila (*),
Emanuel Tundrea (*)

(*) “Politehnica” University of Timisoara, Automation and Computer Science Faculty,

Computer Science Department, V. Parvan no. 2, B622, Timisoara, Romania
dan@cs.utt.ro, chirila@cs.utt.ro, emanuel@emanuel.ro

(**) University “Sophia Antipolis” Nice, I3S Laboratory (UNSA/CNRS),
Les Algoritmes, bat. Euclide B 2000, Route des Lucioles BP121,

F-06903 Sophia Antipolis CEDEX, France
Philippe.Lahire@unice.fr

ABSTRACT
Works made in the last decade according to software development show a general

agreement about the evident gap between object-oriented modeling languages and programming
languages. This gap has a great impact on products reliability, testability and maintenance.
Many companies do not use yet Unified Modeling Language (UML), which is the Object
Management Group (OMG) standard of object-oriented modeling languages for several years.
Indeed, even if they use UML during the analyzing process, they prefer to jump to the
implementation model for the development of application. Instead they are using only an ad-hoc
model that resides directly on implementation. A first explanation is that the lack of semantics
of the entities of UML model contrasts with the specificity of the application model after its
implementation in a programming language. The reaction of OMG against these critics was the
definition of UML Profiles as standard means for adapting the UML to some domain-specific
needs. In this framework, this paper propose a precise representation of programming language
class relationships that can be introduced in a language specific Profile. This goal is achieved
using meta-information about the programming language described in a meta-model named
OFL.

Keywords: UML, application modeling, OFL, meta-programming

1. INTRODUCTION
The Unified Modeling Language (UML) [1] is a standard introduced by OMG.

It is used in a wide area of contexts, by people coming from different communities,
many of them considering (even if it is more or less justified) their case as special and
asking for a deviation from the standard in the form of a particular tuning of UML. A
hard-coded UML precise semantics would preclude the existence of these tunings and
thus would be practically unacceptable. Considering this, the OMG proposed a precise

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

2 of 6

framework for the definition of UML Profiles which would act as a standard way to
adapt UML to some domain-specific needs.

The goal of this research is to define construction belonging to specific Profiles
in order to make object oriented programming languages and UML closer one from the
other. The problem appears especially when UML is used to create an implementation
model. After the implementation of this model, the application will contain itself an
intrinsic model. Because programming languages has a more precise semantic than
UML, these two models will be different. This introduces a serious gap between the
model and its implementation [10]. If the specification changes then problems may
appear during the reengineering phase.

If we consider the definition and the use of UML Profiles, the main problem is
about how to specify this profile in order to fill the gap. This problem is harder if we
think in terms of number of existing programming languages, each of them with
different versions and flavors. The approach presented in this paper proposes to use
meta-information dedicated to the description of programming languages, which are
described in a meta-meta model called OFL [2, 3], developed at “Sophia Antipolis”
University of Nice.

2. UML AND UML PROFILES
The Unified Modeling Language (UML) is a graphical language for visualizing,

specifying, constructing, and documenting the artifacts of a software-intensive system.
The UML is, as its name suggests it, a modeling language and not a method or process.
UML is made up with a very specific notation and related grammatical rules for
constructing software models.

UML in itself does not prescribe or advise on how to use that notation in a
software development process or as part of an object-oriented design methodology. It
describes the notation for classes, components, nodes, activities, work flow, logical,
objects, states and how to model relationships between these elements. UML also
supports the notion of custom extensions through stereotyped elements. Any modeling
language needs support for application constraints as assertions. In UML they are
modeled with the Object Constraint Language OCL [4].

An UML Profile consists of a set of UML extensions (stereotypes, tagged
values, constraints) and it includes specifications dealing with the mapping of the
domain concepts to those extensions, and specifies additional well-formedness rules
(expressed in OCL or in natural language). Each particular profile is described through
its Virtual Meta-model.

The general UML Profile mechanism is discussed in [5]. It presents how specific
domains, which require some specialization of the general UML meta-model, may
benefit from the definition of an UML profile. The goal is that UML provides a more
accurate description of the considered domains. Even if concrete UML profiles have
started to emerge [6, 7], the use of the profiling mechanism is still discussed [8].

3. THE OFL MODEL
OFL is the acronym for Open Flexible Languages [2, 3] and the name of a meta-

model for object oriented programming languages based on classes. It relies on three
essential concepts of object-oriented languages: the descriptions that are a

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

3 of 6

generalization of the notion of class, the relationships such as inheritance or aggregation
and the languages themselves. OFL provides a customization of these three concepts in
order to adapt their operational semantics to the programmer’s needs. It is then possible
to specify new kind of relationships and classes that could be introduced in an existing
programming language in order to improve its expressiveness, its readability and its
capabilities to evolve.

Rather than allowing the redefinition of language behaviors thanks to
algorithms, OFL propose a set of parameters. At first reading the OFL approach can be
summed up as the search for a set of parameters whose value determines the operational
semantics of an object language based on classes. Parameter represents the main
features of the behaviors of these three important notions that are called concept-
relationship, concept-description and concept-language. For instance, concerning the
concept-relationship, the value of the Cardinality parameter allows to specify if it is
simple or multiple. The operational semantics of each concept must adapt itself to the
value of its parameters. This is achieved thanks to a set of action’s algorithms whose
execution depends on these values. This paper considers the original model extended
through modifiers. The extension was a result of a previous work [9].

Figure 1 presents the OFL Architecture in context of a very basic application. It
is organized on three levels: OFL (concepts and atoms), OFL-Components and OFL-
Application.

Fig. 1. The OFL Architecture

 4. DEFINITION FOR VIRTUAL META-MODEL ELEMETS.
A virtual meta-model is a formal model of a set of UML extensions, expressed

in UML. Consequently, this section defines elements regarding relationships

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

4 of 6

representation that have to be included in Profiles designed for object-oriented
languages. These Profiles will be named generic as OFL-ML Profiles. According to
OFL architecture, the Stereotypes introduced in the Virtual Meta-model correspond to
two kinds of relationships: OFL-ImportRelationship and OFL-UseRelationship. Virtual
model contains also the TaggedValues that are required, the Constraints, and the
Common Model Elements.

These stereotypes could be used in modeling tools in order to generate the
corresponding instances of OFL elements and to fill them with the appropriate
information.

4.1. Representation of OFL-ImportRelationships
An OFL-importRelationship is a generalization of the inheritance mechanism

found in object-oriented languages. The meta-programmer has the responsibility to
create an OFL relationship component for each import relationships that exists in the
modeled language. The Profiles will contain all the elements which enable to represents
these components.

The abstract stereotype <<OFLImportRelationship>> is the base for all the
concrete stereotypes representing OFL-ImportRelationhip components of a given
language. The names of the generated stereotypes are the same as the name of the OFL
components with the ”Component” prefix removed (ex. for a component called
”ComponentJavaExtends”, the stereotype <<JavaExtends>> will be created).

A set of tagged values will be associated to all relationships which are
stereotyped as a specialization of <<OFLImportRelationship>>. The values of these
elements correspond to some of the OFL-AtomRelationship characteristics; they are
presented in Table 1. In addition, one tagged value will exists for each modifier
associated with a relationship component.

Table 1. OFL-ML Tagged Values for OFL-ImportRelationhip
Tagged-Value
Name

Tagged-Value
Value

Comment

abstractedFeatures string (list of feature names) list of concrete methods that are
abstracted

effectedFeatures string (list of feature names) list of abstract methods that are
effected

hiddenFeatures string (list of feature names) list of features that are hidden
redefinedFeatures string (list of feature names) list of features that are

redefined
renamedFeatures string (list of feature names) list of features that are renamed
removedFeatures string (list of feature names) list of features that are removed
shownFeatures string (list of feature names) list of features that pass the

relationship unchanged
All modifiers constraints defined at the level of relationship components will be

added. Transformation rules will translate all characteristics of relationships
components into the corresponding tagged values:
(1) self.relationshipCharacteristic->forall(f:Feature|f.modifiers->includes(’modifier_name’))

will be translated into:
(1a) self.stereotype.taggedValue->forall(t:taggedValue |

(t.name = ’relationshipCharacteristic’ and t.values->includes(feature_name))

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

5 of 6

 imply
 self.parent.features->forall(f:Feature | f.name = feature_name
 imply
 f.stereotype.taggedValue->select(name = ’modifier_name’)->size = 1))
In addition, several OFL Parameters have to be considered when constraints are

designed. The considered parameters are: cardinality, repetition, circularity,
feature_variance, abstracting, effecting, masking, redefining, renaming, removing and
showing. Also the characteristic AtomLanguage:: validRelationships have relevance in
this context.

Considering ConceptRelationship::cardinality parameter, it specify the
cardinality of relationship as an integer value n in the meaning of cardinality 1-n.
Constraint related with this parameter will check conformance with cardinality
specification. If cardinality is ∞ no constraint is necessary.

Rule context: cardinality ≠ ∞
context ComponentRelationhip(OFLImportRelationship)
inv: self.child.generalization->select(gen |

gen.isStereotyped(’ComponentRelationship’)
and

gen.child = self.child)->size = n)

4.1. Representation of OFL-UseRelationships
The OFL-UseRelationship is a generalization of the aggregation mechanism

found in object-oriented languages. The meta-programmer has to create an OFL
relationship component for each kind of use relationships which is defined in the
modeled language. The abstract stereotype <<OFLUseRelationship>> is the base for
each concrete stereotype which represent an OFL-UseRelationhip component within the
considered language. As for import relationships, a set of tagged values will be
associated to all use relationships which are considered as a specialization of
<<OFLUseRelationship>>. They correspond to some of the OFL-AtomRelationship
characteristics: hiddenFeatures, renamedFeatures, removedFeatures and
shownFeatures.

Some constraints dealing with parameters of OFL-ConceptRelationship, which
are generated for import relationships, are valid also for use relationships. In this
context, the OFLUseRelationship stereotype will replace the OFLImportRelationship
one as ancestor of the ComponentRelationship stereotype. Considering the parameter
ConceptRelationship:: cardinality, the constraint will be the following after being
transformed:

Rule context: cardinality ≠ 1
context ComponentRelationhip(OFLUseRelationship)
inv: self.child.associations->select(assoc |
 assoc.isStereotyped(’ComponentRelationship’) and
 assoc.child = self.child)->size = n
The parameters that remain significant in the context of a use relationship are:

cardinality, repetition, circularity, masking, renaming, removing and showing.
Constraints will address all these values in the context of the target language.

Figure 2 presents an example of the use of a generated OFL-ML profile to
represent a simple Java application.

A&QT R 2004 (THETA 14)
2004 IEEE-TTTC -International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj Napoca, Romania

6 of 6

Fig. 2. OFL-ML Profile representation of a Java Application

5. CONCLUSIONS AND FUTURE WORK.
This paper presents an approach for describing UML Profiles for object oriented

programming languages modeled by OFL. Because of length constraint, it focused only
on the part dealing with class relationships. It extends original UML elements with
features that allow a better representation of these relationships. The main issue is to fill
the gap between programming language expressiveness and modeling language
semantics. Future works include a better modeling of class entities and the integration of
these elements into several profiles designed for commercial languages like C++, Java
or C#.

6. REFERENCES

[1] Object Management Group OMG (2003) - “Unified Modeling Language
Specification, version 1.5”, 1st ed., http://www.omg.org

[2] P. Lahire, P. Crescenzo, and A. Capouillez (2002) - “Le modele OFL au service du
m´etaprogrammeur - application a Java”, proceedings of LMO 2002, Montpellier

[3] P. Crescenzo and P. Lahire (2002) - “Customisation of Inheritance”, Springer
Verlag, LNCS series, ECOOP’2002 (The Inheritance Workshop) and Proceedings
of the Inheritance Workshop at ECOOP 2002, University of Jyvskyl, Finland

[4] R. Hennicker, H. Hussmann, and M. Bidoit (2002) - “Object Modeling with the
OCL: The Rationale behind the Object Constraint Language”, Springer Verlag,
LNCS series, volume 2263

[5] P. Desfray (1999) - “White Paper on the Profile Mechanism”, OMG document
ad/99-04-07, http://www.omg.org

[6] Object Management Group OMG (2001) - “UML Profile for EJB Specification”,
Version 1.0, http://www.omg.org

[7] Object Management Group OMG (2002) - “UML Profile for CORBA Specification”,
Version 1.0, http://www.omg.org

[8] C. Atkinson and T. Kuhne (2000) - “Strict profiles: Why and how”, Springer Verlag,
LNCS series, volume 1939, UML 2000 IC, University of York, UK

[9] D. Pescaru and P. Lahire (2003) - “Modifiers in OFL: An Approach for Access
Control Customization”, OOIS’03, WEAR workshop, Geneva, Swizerland

[10] K. Kaitanen (1999) – “J-UML Specification”, http://www.vtt.fi, VTT Organization,
Finland

