
AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 1 of 6

QUALITY OF SERVICE PROVISIONING IN MIDDLEWARE

Cosmina Ivan
Department of Computer Science

 Faculty of Automation and Computer Science
Technical University of Cluj, Romania

26, Baritiu str.
Tel: +40-264- 402478

e-mail : cosmina.ivan@cs.utcluj.ro

Abstract: . Commercial off-the-shelf (COTS) distribution middleware is gaining acceptance in
the distributed real-time and multimedia systems. Existing COTS specifications, however, do
not effectively separate quality of service (QoS) policy configurations and adaptations from
application functionality. Application developers therefore often intersperse code that provi-
sions resources for QoS guarantees and program adaptation mechanisms throughout applica-
tions, making it hard to configure, validate, modify, and evolve. Middleware is gaining wide
acceptance as a generic software infrastructure for distributed applications, a growing number
of applications are designed and implemented as a set of collaborating objects using object
middleware, such as CORBA, EJB and (D)COM(+). However, quality aspects of interactions
between objects cannot be specified nor enforced by current object middleware, resulting only
in a best-effort QoS support in middleware. In order to support QoS sensitive applications, sys-
tem-specific QoS mechanisms such as OS scheduling and network reservation mechanisms
need to be controlled, but allowing applications to directly access and control these mechanisms
would negatively impact the distribution transparencies offered by the middleware layer. To
avoid this, next generation object middleware should offer abstractions for management and
control of the system level QoS mechanisms, while maintaining the advantages of the distribu-
tion transparencies. The paper discusses the design and implementation of a QoS-enabled mid-
dleware service for content delivery with QoS guarantees. The integration of the QoS support
result in a QoS-enabled middleware which is representation, location and QoS transparent.

Key words: QoS control, a service for QoS- enabled middleware, adaptive middle-

ware

1. INTRODUCTION

Middleware provides distributed objects with a software infrastructure that of-

fers a set of well-known distribution transparencies. These transparencies enable the
rapid introduction of applications for heterogeneous, distributed systems. However, to
support guaranteed Quality of Service (QoS) system-specific QoS mechanisms need to
be controlled. Allowing applications to directly access and control these mechanisms
would negatively impact the distribution transparencies offered by the middleware
layer and would reduce the portability and interoperability of distributed object applica-
tions.

To avoid this, next generation object middleware should offer abstractions for
management and control of the system level QoS mechanisms, while maintaining the

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 2 of 6

advantages of the distribution tranparencies.The challenge for next-generation middle-
ware is to support application-level QoS requirements, coherent mapping on low level
mechanisms, while maintaining the advantages of the distribution transparencies.

This paper is organised as follows. Section 2 describes the QoS concept in open
distributed systems. Section 3 gives an overview of the requirements for a middleware-
based software infrastructure that offers QoS support to distributed objects and a survey
of existing frameworks Section 4 presents our solution in the form of a service for QoS
provisioning, with a short evaluation of this framework based on the implementation
and section 5 completes with conclusions and further developments.

2. A CONCEPTUAL FRAMEWORK FOR QoS ENABLED MIDDLE-
WARE

Provisioning of QoS usually involves a common understanding between the two

or more parties about the quality characteristics of the service, these parties can be end-
users or software components. The generic concepts are based on the ISO/IEC QoS
Framework, and the provisioning model defines as main entities in the system the ser-
vice provider and the service user. Often the user requirements are expressed as subjec-
tive requirements whereas the service provider needs objective requirements in order to
handle them, therefore the user requirements must be translated into specific QoS pa-
rameters expressed in terms of QoS characteristics of the Service provider.

 The QoS provisioning model should enable entities to express their quality re-
quirements. The relevant concepts for a QoS provisioning model [2] are defined as fol-
lows:QoS characteristic, QoS requirement ,QoS management function and QoS mecha-
nism to manage and control QoS. QoS management architectures provide a coherent
set of abstractions and components in order to enable applications for QoS handling.A
QoS framework combines interfaces and mechanisms that support the development,
implementation and operation of QoS enabled applications and also infrastructure ser-
vices such as for the negotiation of QoS agreements and monitoring them. Thinking of
QoS provision as a client-server relationship means the interaction between them must
be augmented with QoS specific behaviour. The integration of QoS provision in mid-
dleware must address the following points: QoS specification, QoS mechanism inte-
gration and binding andQoS adaptation.

Functions that realise QoS support in a distributed processing environment and
their positioning in an open distributed system are designed mainly based on the fol-
lowing principles: the separation principle which states that transfer , control and man-
agement of data are distinct activities and the integration principle states that QoS must
be configuable, predictable and maintainable over all architectural layers to meet end to
end QoS, both principles derived from multimedia and broadband networks.

There are various requirements on QoS design concepts but the most important
ones are : extensibility, composability, and a verifable and suitable run time represen-
tation. Following those requierements , we propose a layered architecture to structure
the problem space and position the functions that provide QoS support in an open dis-
tributed system. In this architecture, three functional layers are distinguished, each with
distinct responsibilities, offering services to adjacent layers on top and using services of
adjacent layers below. Orthogonal to the layers, three planes are identified: data trans-
fer, control and management.

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 3 of 6

The architectural framework presented in this paper has been developed to be
flexible and reusable and the main benefit that it allows us to combine and balance solu-
tions for the control of multiple QoS characteristics.

3. QoS ENABLED MIDDLEWARE

The original motivation for introducing middleware platforms has been to facili-

tate the development of distributed applications, by providing a collection of general-
purpose facilities to the application designers. Currently, commercially available mid-
dleware platforms(COTS) , such as those based on CORBA, are still limited to the sup-
port of best-effort Quality of Service (QoS) to applications. This constitutes an obstacle
to the use of midlleware systems in QoS critical applications, limitation for the avail-
able middleware technology has inspired much of the research that is currently being
done on QoS-aware middleware platforms. Ideally, a middleware platform should be
capable of supporting a multitude of different types of applications with different QoS
requirements, making use of different types of communication and computing re-
sources, and adapting to changes, e.g., in the application environment and in the avail-
able resources[1].

Middleware provides distributed objects with a software infrastructure that of-
fers a set of well-known distribution transparencies. These transparencies enable the
rapid introduction of applications for heterogeneous, distributed systems. However, to
support guaranteed Quality of Service (QoS) system-specific QoS mechanisms need to
be controlled. Accessing the low-level mechanisms directly by applications crosscuts
the transparency offered by the middleware and limits portability and interoperability.

The middleware layer is a natural place for brokering between QoS requirements
of applications and the QoS capabilities of operating systems and networks. The follow-
ing requirements have been identified and are used as constraints on the design of our
QoS provisioning service:

• applications should be able to specify their QoS requirements using high-level
QoS concepts.

• the software infrastructure should be modular and easily extensible with new in-
terfaces to system level QoS mechanisms

• the software infrastructure should allow adaptive QoS support.
QoS-enabled middleware is being developed in several projects, with different

focuses. We describe here only those systems that enable applications to specify their
QoS requirements using high-level language concepts and realise resource adaptation.
Three main QoS-aware middleware groups can be identified: general purpose middle-
ware, real-time middleware and multimedia middleware.QuO is a CORBA based
framework for configuring distributed applications with QoS requirements[8]. It comes
with a suite of description languages that allow applications to specify the interdepend-
encies between QoS properties and system objects, thereby configuring the adaptive
behaviour of the underlying system, but allows QoS mechanisms to be added at design
time. MULTE-ORB is another QoS-aware middleware that supports configurable mul-
tiple bindings [7]. A QoS requirement is specified per binding, together with policies for
negotiating QoS and for performing connection management, but the QoS configuration
and management system is however ChorusOS and SunOS specific. OMG’s Real-Time
CORBA (RT-CORBA) specification is targeted at real-time distributed systems. Appli-
cations specify policies that guide selection and configuration of protocols and RT-

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 4 of 6

CORBA supports explicit binding in order to validate the QoS properties of bindings.
But after binding time, however, protocols may not be reconfigured.

4. DESIGN AND IMPLEMENTATION

4.1. Design elements

The QoS service is a control plane service, because its actions are limited to a

single association between a client and a server object, acting as a broker between the
application level QoS requirements and the available QoS mechanisms of the distrib-
uted resource platform. The service is a controller for QoS agreements and the frame-
work can be implemented as a CORBA service designed to make use o standard
CORBA extension hooks, it is based on specific CORBA mechanisms the Portable
Object Adapter (POA), the Portable Interceptor and the Open Communications Inter-
face [6],[7].

A generic control system consists of a controlled system in combination with a
controller. The interactions between the controlled system and the controller consist of
monitoring and manipulation performed by the controller on the controlled system.

In QoS-enabled middleware, the 'controlled system' is the middleware function-
ality responsible for the support of interactions between application objects, while the
'controller' provides QoS control.The environment represents the operational context of
the middleware, which consists of application objects with QoS requirements and QoS
offers. The middleware platform encapsulates the computing and communication re-
sources at each individual processing node, which may be manipulated in order to main-
tain the agreed QoS. Since the service uses standardized ORB extension hooks (inter-
ceptors), it can work with any standard ORB implementation that implements these ex-
tension hooks. On the server side, the POA is extended with a dedicated ServantLocator
and a Negotiator object for managing servants with an offered QoS, and on the client
side , the service provides a QoSRepository (QR) interface for managing QoS require-
ments of clients.

The lifecycle of bindings controlled by the service revolves around the QoS
level offered (Qoffered) by a server object, the QoS level required (Qrequired) by a client
object and the agreed QoS level (Qagreed). The purpose of the service is to control the
resources in such a way that some Qagreed is negotiated and maintained for the lifetime
of the binding. This agreed QoS is the result of a matchmaking process between the
offered QoS of the server object and the required QoS of the client.

The lifecycle phases are inform, negotiate, establish, operate and release . Dur-
ing the establish phase, the service assigns the resources that have been reserved during
the previous phase, so other bindings cannot claim these resources. Once sufficient re-
sources have been assigned to the binding, Qagreed must be maintained, this means cor-
recting drifting quality levels, for example, by re-allocating system resources or, in case
it is not possible, by informing applications to take appropriate actions. Applications
can subsequently decide to lower their Qrequired and request a re-negotiation, or end their
binding, this is the operate phase and finally, when the client does not further need the
binding (this is indicated explicitly by the client) system resources are released.

4.2.The service implementation

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 5 of 6

We identify three main concerns addressed by the service: QoS negotiation,
QoS mapping, and concrete resource manipulation. These concerns are addressed by
generic components and plug-in components. The generic components provide generic
functionality to manage the plug-in components.

Three generic components are exposed to the application layer: the QoSReposi-

tory – offers an interface available to clients for registering required QoS with CORBA
object references, QOA (QoS-aware Object Adaptor) – offers an interface available to
servers for registering offered QoS on a CORBA object and its servant and GenericNe-
gotiator which encapsulates the general protocol for performing client-initiated ex-
plicit negotiation. The negotiation is performed by the client using an object reference
that has been registered with the QoSRepository before.

Q Q P P S S

Server Client

A A p p p p l l i i c c a a t t i i o o n n

QoS Repository

Resource
Wrapper

Resource
Manager

QoS
Mappe r

Mapper
Manager

Generic
Negotiator

Specific
Negotiator

Resource
Wrapper

Resource
Manager

QoS
Mapper

Mapper
Manager

QPS
Plug - in

M M i i d d d d l l e e w w a a r r e e

QOA

O S & &
 N e t w o r k k s & D i i s t t r i i b u t e d r e s s o u r e e s

*

*

Generic
Controller

Specific
Controller

OS/ distributed resources
layer

Middleware

Application

Fig. 1. The QoS framework implementation

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 6 of 6

5.2. Conclusions

Next generation middleware must meet the challenge of evolutionary changes

and run-time changes for heterogeneous distributed computing environment in order to
provide distributed objects with support for QoS. This paper presents an architecture for
QoS-enabled middleware that separates the QoS support functions from ‘traditional’
data transfer functions. The framework represent a QoS Adaptive Service that enables
control plane functions to be added to off-the-shelf object middleware for controlling
the QoS of individual client-server associations.

The service follows a lifecycle model to establish and control a QoS agreement
between a client and a server.The implementation presented here uses standard CORBA
extension hooks, which makes the service a portable CORBA service. Future work
includes the study of the applicability of the provisioning service to manage the QoS of
multimedia streams and implementing a more advanced interface between the service
and system level QoS control mechanisms, including other QoS networking mecha-
nisms.

6.REFERENCES

 [1] S. Frolund and J. Koistinen (1999) Quality of Service Specification in Distributed
Object Systems Design, Proceedings of the 4 th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS), Santa Fe, New Mexico, April 27-30,
1998. Applications (DOA’99)
[2] M. Karsten, J. Schmitt and R. Steinmetz (2001) Implementation and Evaluation of
the KOM RSVP Engine, IEEE InfoCom 2001
[3] T. Kristensen and T. Plagemann (2000) Enabling Flexible QoS Support in the Ob-
ject Request Broker COOL, 20th International Conference on Distributed Computing
Systems (ICDCS’00), Taipei, Taiwan
[4]C Ivan. K. Pusztai, An adaptable QoS provisioning service for distributed objects,
CSCS14 – 2-5 July 2003, Bucharest , ISBN973-8449-17-0, pag 412-421, Editura Poli-
tehnica press
[5] C Ivan, Concepts, models and services for QoS-aware middleware, EMES 2003,
Oradea , ISSN12223-2106, section C - Computer Science and Reliability - pg. 71 -81
[6] Object Management Group (2000) The Common Object Request Broker: Architec-
ture and Specification OMG document formal/00-10-33.
[7] Siqueira and V. Cahill (2000) A QoS Architecture for Open Systems, 20 th Interna-
tional Conference on Distributed Computing Systems (ICDCS’00), Taipei, Taiwan.
[8] J. Zinky, R. Schantz, J. Loyall, K. Anderson and J. Megquier (2001) The Quality
Objects (QuO) Middleware Framework. Workshop on Reflective Middleware (RM
2001), New York, USA.

