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Abstract: A simplified transfer function of the machine is used to design various speed 
controllers: classic PI, H2 and H∞ ones. The controllers are tuned for the nominal plant, around 
which the mathematical model of the machine was linearised. The vector-control-based driving 
system was simulated, imposing different perturbations: load steps, moment of inertia, friction 
coefficient. Robustness was analysed. 
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1. INTRODUCTION 
 

In most of the modern drive systems with AC machines which require rotor speed 
control, the main task is to develop a robust controller, able to achieve high dynamic 
performance and to maintain the system response within specified tolerances, for a large 
range of the reference speed values and variations of perturbances, like: load torque, 
total inertia moment, friction coefficient, etc. [1], [4], [5].  

The designing procedure of the speed controllers can be very difficult, if a complex 
mathematical model of the plant (here of the AC machine) is used.  But robust 
controllers keep the dynamic and stability performance of the controlled system even if 
structured or unstructured uncertainties appear. That's why, robust speed controllers will 
be designed using simplified models of the AC machines, and have to be used in a 
complex structure based on the vector-control principle [2]. 

 
2. DESIGN OF THE ROBUST H∞ CONTROLLER 

 
We intend to apply the designing procedure of the robust H∞ controller to the speed 

control loop, presented in figure 1. The speed controller was tuned for a speed step, 
from zero to the rated value, by imposing the following performance criteria: stationary 
error εstp = 0; overshoot σ ≤ 5%; response time tr = 0,15 [sec]; crossover band ∆ωB≤150 
[rad/sec]. 

The design specifications in frequency domain are: 
• robust performance specifications: minimizing the sensitivity function S (reducing it 

at least 100 times to approximate 0.3333 rad/sec). 
• robust stability specifications: -40 dB/decade roll-off and at least -20dB at a 

crossover band of 100 rad/sec. 
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The H∞ optimal control designing problem in the particular case of applying the small 
gain problem is to form an augmented plant of the process P(s) with the weighting 
functions W1(s) and W3(s) to find an optimal stabilizing H∞ controller, so that the 
infinity  norm of the cost function Ty-u  is minimized and is less then one [8], [9]: 

<
∞−uyT  1. (1) 

Considering the robust stability and robust performance criteria, the weighting 
functions for the optimal H∞ controller and the same speed control loop with the PM 
synchronous motor are: 
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where γ represents the actual step value. The iterative process continues, until the 
graphic representation in Bode diagram of cost function Ty-u reach his maximum value 
in the proximity of 0 dB axis. In our case, for γ=39,75 we obtain the infinite norm 

9999,0=
∞−uyT , and the corresponding H∞ speed controller is: 
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The dynamic performances and the robust and stability performance criteria are 
performed. The sensitivity function S(s) and the complementary sensitivity function 
T(s) of the close loop for the nominal plant are: 
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The weighting functions W1(s) and W3(s), and the sensitivity functions S(s) and T(s) 
are presented in figure 2. From this diagram results the influence of the weighting 
function W3

-1(s) to limit the peak value of T(s) function. The output of the speed 
controller, i.e. the active current component was limited. 
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 Fig. 1. Simplified speed close- loop Fig. 2. Weighting functions W1
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  functions S(s) and T(s). 
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The logarithmic Bode diagram and the Nyquist diagram of the direct-loop transfer 
function of the weighted process are presented in figure 3. According to them we 
establish the following stability parameters: crossover band ∆ωΒ = 153,7 rad./sec.; 
stability margins: gain margin = 130,3 dB; phase margin = 86,8°. For the same 
performance and robust stability specifications, a great number of weighting functions 
described by equation (2) can be chosen, so the solution of designing an optimal H∞ 
controller is not unique [6], [10]. To analyse if the speed control structure with the H∞ 
controller presented in (3) is robust stable, we apply the stability theorem for two 
different types of perturbation in the drive system, namely a highest variation of total 
inertia moment from Jmot to 10Jmot and a highest variation of friction coefficient from 
Bmot to 100Bmot. The condition 1)()( <

∞
∆ sTsM

 must be tested, where )(sM∆  

represents the greatest multiplicative uncertainty for the nominal plant. 
 

3. STABILITY ANALYSE FOR A VARIATION FROM JMOT TO 10JMOT.  
 

Considering the calculus way of the transfer function of the process, a ten times 
growing of the inertial moment, practically means a ten time growing of the time 
constant of the fixed part. The transfer functions of the nominal process and of the 
disturbed process are: 
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and the existent relation between the nominal process, disturbed process, and the 
maximal multiplicative uncertainty is: 

))(1()()( ssPsP MN ∆+⋅= . (7) 

Using (7) and considering Tm=1,232 [sec], the multiplicative uncertainty in the case of 
ten times growing the inertial moment J, can be modeled as follows: 
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Fig. 3. Direct-loop transfer function of the weighted process in Bode and Nyquist 

diagram. 
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Known the expression of the complementary sensibility function T(s), the condition of 

robust stability can be determined, beeing 9359,0)()( =∆
∞

sTsM . So, the control 

system with H∞ controller remains robust stable for a variation of 10 times of the total 
inertial moment of the system, related to the catalogue one. Figure 4 shows the direct-
loop transfer function Hd(s) family curves for the PI controller and for the optimal H∞, 

controller, at variations of the inertial moment of the synchronous motor, starting at  Jmot 
value, from 3, 5, 7 and 10 times of this value. As we can see from the presented graphs, 
at the variations of J, though the PI controller doesn’t go in instability, thus it is more 
sensitive at the parameter variations than the H∞ controller. This shows a better 
robustness of the H∞ optimal regulator. 
 

4. STABILITY ANALYSE FOR A VARIATION FROM BMOT  TO 100BMOT. 
 

Considering that the largest  variation of the frictional coefficient of the mechanical 
system is the 100 times growing of the Bmot catalogue value. A 100 times growing of the 
frictional coefficient practically means a 100 times diminution of the time constant and 
of the amplification factor of the fixed part. Considering the above mentioned, the 
transfer functions of the nominal process and of the disturbed processes are: 
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Using relation (6) and the time constant of the nominal process, the maximal 
multiplicative uncertainty, in the case of  100 times growing of the B frictional 
coefficient, can be modeled as: 
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The robust stability condition will be expressed as: 

9999,0)()( =∆
∞

sTsM . (11) 

We can find that the control system with the H∞ controller remains robust stable for a 
100 times variation of the friction coefficient.  
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Fig. 4. Bode diagram of direct-loop transfer functions for PI and H∞ controller, at 
different inertia moment values. 



A&QT-R 2004 (THETA 14) 
2004 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics 

May 13 – 15, 2004, Cluj-Napoca, Romania 
 

5 of 6 

 

nr (rev/min)

 time (sec)

PI

H 2
H ∞

 time (sec.)

nr (rev./min.)

H ∞

H 2

PI

 
 Fig. 5. Speed response at low speed step. Fig. 6. Speed response at speed and load step. 
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 Fig. 7. Speed response for nominal process (B=Bmot  and  Jtot=Jmot ). 
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Fig. 8. Speed response for perturbed moment of inertia (B= Bmot  and Jtot=11 Jmot ). 
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Fig. 9. Speed response for perturbed friction coefficient (B=50 Bmot  and  Jtot=Jmot ). 
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CONCLUSIONS 
 
A speed field-oriented control of the permanent magnet synchronous motor was 

simulated in MATLAB using the designed PI and H∞ controllers and a robust H2 
controller [10]. The synchronous servomotor is a Stoeber ES42 one having: rated speed 
n = 3000 rev/min; rated torque M = 1,7 Nm; rated power P = 530 W; motor constant k = 
1,05 Nm/A; PM flux ΨPM = 0,2334 Wb; inertia moment J = 1,85*10-4 kgm2; friction 
coefficient B = 5*10-5 Nm(rad/sec)-1. 

In figure 5 a speed response of the nominal process was simulated for a 300 rev./min. 
speed step. In figure 6 we have the response for a 3000 rev./min. speed step and a 
nominal torque step at t=0.3 sec. Figure 7 presents the simulated results for a speed 
control of the synchronous machine, with PI, H2, and H∞ controller, having all 
parameters at the nominal value. In figure 8, the speed response is for a perturbed plant 
with Btot=50Bmot for the same imposed speed step and nominal torque from t=0. The 
speed response for a similar simulation of a perturbed plant with moment of inertia 
variation Jtot=11Jmot is presented in figure 9. For the nominal plant the dynamic 
performances at a speed step are similar for all three controllers. It is normal to be so, 
because the controllers have been designed using a simplified model of the machine, 
working in the stady state nominal point. The advantage of using optimal H∞ robust 
controller is evident in the presented simulations when the nominal plant is perturbed, 
by changing the load torque, the total moment of inertia or the friction coefficient 

In conclusion, we consider that the H∞ optimal robust controller ensures good 
dynamical performances and stability for a domain of variation large enough of the 
parameters that can be modified in the process. In applications where electromechanical 
parameter variations or load perturbations appear (such as robot control), performant 
drive systems with AC machines can be considered, by using robust speed (or position) 
controllers. 
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