
AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 1 of 6

ENHANCED COMMITTED INSTRUCTIONS COUNTING (ECIC):

A Scheme for Error Detection Enhancement in COTS Processors

Amir Rajabzadeh*, Seyed Ghassem Miremadi **

Sharif University of Technology

Azadi Ave., Tehran, Iran,
Tel:+98 21 616 4640, Fax: +98 21 601 9246

rajabzad@ce.sharif.edu*, miremadi@sharif.edu**

Abstract: Increasing use of commercial off-the-shelf (COTS) processors in industrial, embed-
ded, and real-time systems necessitates the development of error detection mechanisms for such
systems. This paper presents an error detection scheme called Enhanced Committed Instructions
Counting (ECIC) to increase error detection in COTS processors without any external hardware.
The scheme uses an internal Performance Monitoring feature which provides the ability to count
the number of committed instructions in a program. The scheme is experimentally evaluated on
a 32-bit Pentium® processor using software implemented fault injection (SWIFI). The results
show that the error detection coverage varies between 90.52% and 98.18%, for different work-
loads.

Key words: error detection enhancement, COTS processors, control flow checking, software
implemented fault injection.

1. INTRODUCTION
The increasing popularity of low-cost safety-critical computer-based applications,

has caused the use of Commercial Off-The-Shelf (COTS) processors in these applica-
tions to become particularly attractive. COTS processors are widely used in industrial
[1], embedded [2], real-time [2], [3] and space [4], [5] applications. Internal error detec-
tion mechanisms available in the COTS processors have limited error detection cover-
age and poor error containment provisions [3], [4], [6]. For example, Pentium® proces-
sors employ different levels of parity checking with 53% error detection coverage [7].
This is an unacceptable coverage, which necessitates the use of additional error detec-
tion techniques to enhance the error detection coverage. To enhance the error detection
coverage, behavior-based error detection techniques, specially control flow checking
(CFC) methods [8], are becoming an attractive solution when cost is a major concern.
Some CFC methods are pure software (SW-CFC) without any extra hardware and some
of them (HW-CFC) use an external watchdog processor (WDP). Traditional HW-CFC
methods, such as TTA [9], TSM [10], may not be applied to modern processors with
on-chip caches and instruction pipelines [11]. To eliminate these limitations, we have
developed an error detection scheme, called Committed Instruction Counting (CIC)
[11]. The CIC scheme can be applied to most modern COTS processors with internal
cache and pipelines, such as Pentium processor. In this paper, we present an enhanced

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 2 of 6

version of the CIC scheme, called Enhanced Committed Instructions Counting (ECIC).
Low performance overhead and elimination of the WDP were major reasons for the
design of the ECIC scheme. The ECIC scheme is a SW-CFC method. The SW-CFC
methods are usually weak in detection of illegal jumps to out of the program areas and
illegal infinite loops, such as CFCSS [12] and BSSC [13], because these methods check
the correctness of the operation only at specific points of the program. However, the
ECIC scheme has the ability to detect illegal jumps to out of the program areas and ille-
gal infinite loops. The ECIC scheme uses the Performance Monitoring features of
COTS processors. The scheme has been experimentally evaluated on a Intel Pentium®
processor. The results show that the error detection coverage varies between 90.52%
and 98.18%, for different workloads.

The next section discusses Performance Monitoring features. In section 3, the de-
sign of the ECIC scheme is presented. The experimental system and results are given in
section 4. Finally, section 5 concludes the paper discussion.

2. PERFORMANCE MONITORING FEATURES
Many of the current superscalar processors such as Pentium [7], AMD x86-64

[14], Alpha [15], MIPS R10000 [16] and PowerPC-604 [17] include features called Per-
formance Monitoring. The Performance Monitoring features use special internal count-
ers, which can be configured to count the occurrences of several events in the proces-
sors. Examples of such events are cache hits, instructions committed and branches taken
[7]. Each Performance Monitoring counter (PM-counter) can be set to an arbitrary value
at any time. After that, the content of the PM-counter will be increased by one for each
occurred event. Some processors also have special pins, called event-ticking pins [7],
which can signal out the occurrences of internal events of the processors. In our study,
we have used a Pentium® processor whose Performance Monitoring features have two
PM-counters, CTR0 and CTR1, and two event-ticking pins, PM0 and PM1. The CTR0
and CTR1 overflow can be reported on PM0 and PM1 pin [7].

3. THE ECIC SCHEME
In this section, we present the ECIC scheme. The

ECIC scheme like CIC scheme [11] assumes that the
program is partitioned into Branch Free Blocks
(BFBs); a sequence of non-branching instructions, and
Partition Blocks (PBs); a set of instructions between
two physically consequent BFBs [11]. In this model,
we distinguish between seven types of control flow
errors (CFEs) [9], [11], which are shown in Figure 1.

3.1. ECIC error detection mechanisms
The main concept of the ECIC scheme is based on the traditional signature moni-

toring, i.e., 1) program partitioning into BFBs and PBs, 2) offline signature generation
for BFBs and PBs, and 3) online signature checking for BFBs and PBs. The ECIC
scheme consists of four mechanisms to detect seven types of CFEs (Figure 1):

Enhanced BFB Instruction Counting (EBIC): The EBIC mechanism derives a sig-
nature (e.g. mi) for each BFBi at the compile time, which is the number of instructions
executed in the BFBi. At the beginning of the BFBi the PM-counter will be set to 2n-1-
mi. n is the number of PM-counter bits and 2n-1 is the largest number that PM-counter

BFB

PB

PB

PB

BFB

1

2

3

4

5

6

7

Figure 1 – Program parti-

tions and types of CFEs

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 3 of 6

can hold. During the execution of the BFBi, for each instruction executed, the PM-
counter will be increased by one. The PM-counter must exactly reach 2n-1 after the last
instruction executed in the BFBi. Any inconsistency will be detected in one of the fol-
lowing two ways: 1) At the end of the BFBi, the PM-counter will be read. If the PM-
counter value is less than the expected value (i.e. 2n-1) a CFE is detected. 2) If the PM-
counter overflows before reaching the end of BFBi, an event-ticking pin (i.e. PM0 or
PM1) signals the occurrence a CFE. The EBIC mechanism detects all CFEs of types 3
and 6, as well as some CFEs of types 1 and 5.

Enhanced PB Instruction Counting (EPIC): The EPIC mechanism tries to detect
CFEs within PBs. The mechanism checks the maximum number of instructions that are
allowed to be executed continually outside the BFBs, say p. p is the pre-calculated sig-
nature, which is unique for all PBs and may be obtained from the source code. How-
ever, it may be easer to obtain p with experimental observation. At the beginning of a
PBi (end of a BFBi), a PM-counter is set to 2n-1- p. During the execution of the pro-
gram outside the BFBs, the PM-counter is incremented for each instruction executed. In
normal operation, the PM-counter is less than 2n-1 during the execution of PB instruc-
tions. If PM-counter overflows, an error will be signaled on an event-ticking pin. The
EPIC mechanism detects all CFEs of type 7. CFEs of Types 2 and 4 can also be de-
tected if the number of instructions executed violates the maximum value (i.e. p).

Index: At compile time, this mechanism assigns an arbitrary unique index to each
BFB. At run time, the index of a BFB, called BFB-Index, is stored in a global variable
at the beginning of the BFB. At the end of the BFB, the variable will be compared to the
BFB-Index. If these two indices are different then a CFE will be reported. The Index
mechanism detects all CFEs of type 1.

Phase: This mechanism checks the correct order of entering and exiting the BFBs
[9]. During error-free operation, an entry to a BFB should always be followed by an exit
from that BFB. Hence, a fault, which causes the execution to erroneously pass through
two subsequent entry points or two subsequent exit points, can easily be detected. The
Phase mechanism is implemented in the same manner as the Index mechanism. The
Phase mechanism detects all CFEs of types 4 and 5.

3.2. ECIC implementation
The assembly codes of workload programs can be used to add the redundant in-

structions needed to implement the ECIC scheme. To do this, a program, called a
postprocessor was developed which accepts an assembly program and generates a
version of that assembly program protected with the ECIC scheme, see Figure 2. The
structure of a program after inserting the redundant instructions is shown in Figure 3.

PBk
ECIC codes in BFBk entry

BFBk
ECIC codes in BFBk exit

PBk

Figure 2 – Generation of a program
protected with the ECIC scheme Figure 3 – Protected program

with the ECIC scheme

Protected
Assembly program

Assembly program

High-level program

Compiler

Postprocessor

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 4 of 6

To reduce overheads, it is recommended that BFBs with few lines of instructions
(e.g. less than four) merge to the adjacent PBs and will be considered as one larger PB.
Two programs, a linked list (List) and an inverse matrix (Matrix), have been used as
workloads. Using the postprocessor, the extra codes needed to implement the ECIC
scheme were added to the workloads. The extra instructions inserted in the workload
programs incur program size and performance overheads as are summarized in Table 1.
As shown in Table 1, the overhead of the program size and number of instruction exe-
cuted in the ECIC and CIC schemes are equal, because the number of extra instructions
in the both schemes are equal. The percentages of performance reduction in the ECIC
scheme for Matrix and List programs are 42% and 67%, respectively. However, these
values were 210% and 245% in the CIC scheme because of I/O operation. The ECIC
scheme eliminates WDP and its I/O instructions and therefore improves performance.

Table 1. Overheads

 Matrix List
Number of instructions executed in the original program 11,551,140 4,170,314
Number of instructions executed in the protected program (ECIC and CIC) 17,610,375 7,646,631
Overhead of the number of instructions executed (ECIC and CIC) 52% 86%
Overhead of the program size (ECIC and CIC) 10% 5%
Overhead of the execution time (ECIC) 42% 67%
Overhead of the execution time (CIC) 210% 245%

4. Experimental evaluation
In this section, we present the organization of the experiment system and experi-

mental results.

4.2. Experimental system
The organization of the experimental system is shown in Figure 4. The system

consists of three parts: a Pentium board, an FPGA board and a host computer.
 The Pentium board: The board has been equipped with a 100 MHz Intel Pen-

tium® processor. Two important programs are executed on the Pentium® processor
under Linux OS; the workload pro-
gram (i.e. Matrix and List) and fault
injector routine. The routine gener-
ates CFEs as follows: 1) the fault
activator logic activates the NMI
pin of the Pentium® processor, 2)
the NMI service routine reads the
return address from the stack,
changes a bit in the least significant
bits (bits 0~7) of the return address
and then writes it back to the stack.
After returning from the NMI service routine, the execution continues at an unexpected
address due to the change of the value of the return address.

The FPGA board: The fault activator logic and the interface logic have been inte-
grated on this board. The FPGA board has been equipped with an Altera Flex10k30
FPGA.

Pentium Board

FPGA Board

Program Manager &
Offline Data Analyzer

Fault Inject C
om

m
and

NMI

Host Computer

CPU

PM0

Cache Memory

Performance
Monitoring Counters

Interface
Logic

Fault
Activator

Pipelines

Figure 4 – The experimental system

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 5 of 6

The Host computer: The Host computer contains a Manager Program to manage
and control the whole experiment and an offline data analyzer which analyzes the raw
data and extracts the results.

4.2. Experimental results
This section presents the experimental results of the error detection coverage. The

results are based on about 6000 faults. The coverage results are presented in Table 2.

Table 2. Fault detection coverage
 Coverage (%)

Workloads Error classes EBIC EPIC Index Phase Total
CFEs resulted in program-crashes

(67.50%)
52.32

(35.32)
47.34

(31.95)
0

(0)
0

(0)
99.66

(67.27)
Other CFEs

(32.50%)
18.57
(6.04)

10.42
(3.39)

0.7
(0.23)

75.82
(24.64)

95.11
(30.91)

Matrix

All CFEs (100%) 41.36 35.34 0.23 24.64 98.18
CFEs resulted in program-crashes

(70.50%)
47.08

(33.19)
52.36

(36.91)
0

(0)
0

(0)
99.44

(70.10)
Other CFEs

(29.50%)
27.59
(8.14)

1.28
(0.38)

4.85
(1.43)

38.01
(11.21)

69.22
(20.42)

List

All CFEs (100%) 41.33 37.29 1.43 11.21 90.52
CFEs resulted in program-crashes

(69%)
49.70

(34.26)
49.85

(34.43)
0

(0)
0

(0)
99.55

(68.69)
Other CFEs

(31%)
23.08
(7.09)

5.85
(3.77)

2.78
(0.83)

56.92
(17.93)

82.79
(25.67)

ECIC
Total

All CFEs (100%) 41.35 38.20 0.83 17.93 94.36

CFEs resulted in program-crashes
(69%) 100

(69.00)
Other CFEs

(31%) 86.79
(25.67)

CIC
Total

All CFEs (100%) 94.67

Note that an error can be detected with more than one mechanism. To determine
the effectiveness of the ECIC mechanisms, the CFEs are divided into two classes: 1)
CFEs resulting in program-crashes, and 2) other CFEs. As shown in Table 2, the per-
centages of all errors resulting in program crashes were 67.50% and 70.50% for Matrix
and List programs, respectively. These values depend on several parameters; the aver-
age instruction length, the location of fault injection in the program, etc. The Index and
Phase mechanisms are unable to detect any program crash at all, because they need to
reach the end of a BFB in the program to detect an error. Although, the ECIC scheme
was capable of detecting most program crashes (99.55%), however, about 0.45% of the
program crashes were left undetected. In these cases the PM-counter has stopped. This
may have been caused by misconfiguration of MSR's configuration register caused by
an illegal jump to an incorrect place in the sequence of instructions configuring this reg-
ister. The CIC scheme is capable of detecting all program crashes (100%), because the
CIC scheme uses an external workload timer (WL-Timer [11]) which can detect all
crashes. The WL-Timer causes that error detection coverage of the CIC scheme
(94.67%) to become 0.31% more than the coverage of the ECIC scheme (94.36%).

AQTR 2004 (THETA 14)
2004 IEEE-TTTC - International Conference on Automation, Quality and Testing, Robotics

May 13 – 15, 2004, Cluj-Napoca, Romania

 6 of 6

5. Summery and Conclusions
This paper presents a scheme called Enhanced Committed Instructions Counting

(ECIC) to enhance error detection coverage in COTS processors without any external
hardware. The scheme uses the Performance Monitoring features of the processors. The
scheme is a cost-effective to enhance error detection in COTS processors with internal
Performance Monitoring features. The scheme has the ability to detect illegal jumps to
out of the program areas and illegal infinite loops. The results show that the error detec-
tion coverage varies between 90.52% and 98.18%, for different workloads.

6. REFERENCES
1. Croll P. and P. Nixon, (1991), “Developing Safety-Critical Software within a CASE En-

vironment”, IEE Colloquium on Computer Aided Software Engineering Tools for Real-
Time Control, p.p. 8.

2. Gill C. D., R. K. Cytron and D. C. Schmidt, (2003), “Multiparadigm Scheduling for Dis-
tributed Real-Time Embedded Computing”, Proceedings of the IEEE , Vol. 91, Issue 1,
p.p. 183 -197.

3. Chevochot P. and I. Puaut, (2001), “Experimental Evaluation of the Fail-Silent Behavior
of a Distributed Real-Time Run-Time Support Built from COTS Components”,
IEEE/IFIP International Conference on Dependable Systems and Network, p.p. 304 -313.

4. Madeira H., R. R. Some, F. Moreira, D. Costa and D. Rennels, (2002), “Experimental
Evaluation of a COTS System for Space Applications”, IEEE/IFIP International Confer-
ence on Dependable Systems and Networks.

5. Some R. R. and D. C. Ngo, (1999), “REE: A COTS-Based Fault Tolerant Parallel Proc-
essing Supercomputer for Spacecraft Onboard Scientific Data Analysis”, Proc. of the
Digital Avionics System Conference, Vol. 2, p.p. B3-1-7 -B3-1-12,

6. Avizienis A., (2000), “A Fault Tolerance Infrastructure for Dependable Computing with
High-Performance COTS Components”, Proceedings International Conference on De-
pendable Systems and Networks, p.p. 492 -500.

7. Intel Corp., (1997), Pentium ® Processor Family Developer’s Manual.
8. Mahmood A. and E.J. McCluskey, (1988), “Concurrent Error Detection Using Watchdog

Processors - A Survey”, IEEE Transactions on Computers, p.p. 160 -174.
9. Miremadi G., J. Ohlsson, M. Rimen, and J. Karlsson, (1998), “Use of Time, Location and

Instruction Signatures for Control Flow Checking”, Proc. of the DCCA-6 International
Conference, IEEE Computer Society Press.

10. Madeira H., M. Rela, P. Furtado and J. G. Silva, (1992), “Time Behaviour Monitoring as
an Error Detection Mechanism”, 3rd IFIP Working Conference on Dependable Comput-
ing for Critical Applications (DCCA-3), p.p. 121-132.

11. Rajabzadeh A.; Mohandespour M.; Miremadi Gh., (2004), ”Error Detection Enhance-
ment in COTS Superscalar Processors with Event Monitoring Features”, 10th Interna-
tional Pacific Rim Dependable Computing Symposium (PRDC10), p.p. 49-54.

12. Oh N., P. P. Shirvani, and E. J. McCluskey, (2002),”Control-Flow Checking by Software
Signatures”, IEEE Trans. In Reliability, Vol. 51, No 2. p.p. 111-122.

13. Miremadi G., J. Karlsson, U. Gunneflo, and J. Torin, (1992), “Two Software Techniques
for On-Line Error Detection”, 22nd Annual International Symposium on Fault-Tolerant
Computing (FTCS-22), p.p. 328-335.

14. Advanced Micro Devices, Inc., (2002), AMD x86-64 Architecture Programmer’s Man-
ual, Volume 2: System Programming.

15. Compaq Computer Corp., (1998), Alpha Architecture Handbook.
16. MIPS Technologies Inc., (1996), MIPS R10000 Microprocessor User’s Manual.
17. Motorola Inc., (1994), PowerPC 604 RISC Microprocessor Technical Summary.

