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ABSTRACT    
  

In the previous decades, model predictive control (MPC) has developed substantially, 
both in research and industry. MPC is, perhaps, the most general way of posing the process 
control problem in the time domain. This control based on on-line optimization, has long been 
recognized as the winning alternative for constrained systems. MPC is not a new approach, and 
has traditionally been applied to plants where the dynamics are sluggish enough to permit a 
sampling rate amenable to optimal input computations between samples, for example chemical 
process plants. These systems are usually also governed by strict constraints on states, inputs 
and/or combinations of both. The main limitation of MPC is, however, its on-line computational 
complexity but with the progress of faster modern computers, it has become possible to extend 
the MPC approach to systems governed by faster dynamics that warrant this type of solution. 
 This paper presents the application of an adaptive MPC algorithm in motion control. 
The basic idea of the algorithm is the on-line simulation of the future behavior of control 
system, by using a few candidate control sequences. Then, these simulations are used to obtain 
the ‘optimal’ control signal. The efficiency and applicability of the proposed algorithm in 
motion control are demonstrated through applications. 

 
KEYWORDS: model-predictive control, rule-based control, adaptive control, multiple 
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1. INTRODUCTION. 
 

Today, many industrial systems are still controlled by simple PID algorithms, 
despite the better performances usually provided by systems developed following the 
modern control theory. This is probably not only due to the quite surprising efficacy of 
this simple control method, but also to the higher computational load and design effort 
required by most of the more sophisticated control techniques. PID controllers can be 
used to control a wide range of different processes, need only rough process models to 
be easily tuned and give pretty good set-point tracking performances. On the other hand 
it is clear that PID performances, though satisfactory, could be improved when dealing 
with highly nonlinear processes, or processes featuring unmodeled dynamics and 
external disturbances. This is specially needed in those applications where highest 
accuracy is required, like in robot manipulator joint position control. The closed 
mechanical chains make the dynamics of parallel manipulators coupled and highly 
nonlinear. To minimize the tracking errors, the dynamical forces need to be 
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compensated by the controller. This control should ensure the best possible compliance 
of planned trajectory with taking into account the maximum available torques of the 
drives and effective cooperation between drives. 

To overcome such restrictions, many advanced control [4], [5], [6] strategies 
have been developed in the past, showing that a good control schema could both ease 
the design and improve performances over process variations from the model.  

The aim of this paper is the study of a model based adaptive predictive 
algorithm and applications in motion control.  

 
 
2. CONTROL ALGORITHM  

 
In [1], [2] it is proposed an algorithm which uses on-line simulation and rule 

based control. This algorithm is designed for applications with cvasiconstant set-point, 
arbitrary changed. Using a few candidate control sequences, for every sample period is 
computed the predictions of output over a finite horizon and the cost of an objective 
function. To use this algorithm in motion control, the rules must be changed. Figure 1, 
contains some examples of the evolutions of error (difference between future set point 
and predicted output, ai(t), i=1...4) for candidate sequences (ui(t),i=1..4). On every 
curve it is represented the term which is used by algorithm (min0, min1, max0, max1) to 
compute control effort.  

 
 

Fig. 1: Examples of output predictions 
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Notations: d is dead time, t0 is current time, t1 is the horizon of output, δ is a 
parameter which is used for a fine-tuning (first, it is more simple to consider δ=0). 
For a first stage, are used the next four control sequences:           
              ( ) { }minminmin1 ,..,, uuutu =   ( ) { }minminmax2 ,..,, uuutu =  
 ( ) { }maxmaxmin3 ,..,, uuutu =  ( ) { }maxmaxmax4 ,..,, uuutu =                              (1)  
where umin and umax are the limits of the control signal.  
 In the second stage, depending by the behavior of control system, it is used an 
algorithm that modifies the limits of control signal:  
      umin ≤ uminst(t) ≤ u(t) ≤ umaxst(t) ≤ umax                      (2) 

        Δumin≤ Δu≤ Δumax          (3) 
In relations (1), the values of umax, umin are replaced with uminst(t), uminst(t). At every 
sample period, the steps of the algorithm are: 
 
STEP 1: Output measuring y(t); up-date input u[.] and output y[.] vectors 
STEP 2: Identification   
STEP 3: Simulate the behaviour of system for the next control sequences and compute 
extremes of future errors: 

( ) { }ststst uuutu minminmin1 ,..,,=       ⇒       ( ){ }ta
ttdt

1
10

0 maxmax
<<+

=   

( ) { }ststst uuutu minminmax2 ,..,,=      ⇒       ( ){ }ta
ttdt

2
10

1 maxmax
<<+

=  

( ) { }ststst uuutu maxmaxmin3 ,..,,=  ⇒       ( ){ }ta
ttdt

3
10

0 minmin
<<+

=  

( ) { }ststst uuutu maxmaxmax4 ,..,,=  ⇒       ( ){ }ta
ttdt

4
10

1 minmin
<<+

=  

STEP 4: Use simulated results and next rules: 
R1: IF  min0>δ                                      THEN u(t)=uminst(t) ELSE 
R2: IF  max1<-δ                                      THEN u(t)=umaxst(t) ELSE 
R3: IF  a4(t+k+1)>0           AND  min1<-δ            THEN u(t)=umaxst(t) ELSE 
R4: IF a1(t+k+1)<0            AND  max0>δ             THEN u(t)=uminst(t) ELSE 

    R5:  ( ) ( ) ( )
01

0max1min

minmax
minmax

−
−

=
tututu stst   

STEP 5: Up-date umaxst(t), uminst(t): 
IF R5  THEN    IF umaxst(t)-umed(t)>umed(t)-uminst(t)  
       THEN 
          umaxst(t)=umaxst(t)-Kst(umaxst(t)-umed(t)) 

                                      uminst(t)=2umed(t)-umaxst(t)          
       ELSE    uminst(t)=uminst(t)-Kst(uminst(t)-umed(t)) 

                                          umaxst(t)=2umed(t)-uminst(t)          
     IF umaxst(t)-umed(t)<Dust  THEN      umaxst(t)=umed(t)+Dust 
     IF umed(t)-uminst(t)<Dust   THEN       uminst(t)=umed(t)-Dust 

IF R2  OR  R3    THEN    umaxst(t)=(1+Kst)umaxst(t) 
IF R1  OR  R4    THEN    uminst(t)=(1-Kst)uminst(t) 

      IF   umaxst(t)>umax   THEN  umaxst(t)=umax. 
      IF   uminst(t)<umin   THEN  uminst(t)=umin. 
STEP 6: u(t) filter:    IF R5 then u(t)=Kuu(t)+(1-Ku)umed(t)   
STEP 7: Compute the average of controller’s output: 
  umed(t+1) = Kumedumed(t)+(1-Kumed)u(t).    
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Fig. 3: The poles and zeros after 160 steps 

Control parameters: Kst reduces the difference umaxst-umnist, Dust is accepted minimum of 
umaxst(t)-uminst(t), Ku, Kumed are weight factors. 
  
 
 3. EXPERIMENTS 
 
 For experiments, it is considered a position control system based on a DC motor. 
The model of the process was obtained using experimental identification: 

)19248.0z)(40347.0z)(1z(
)025.1z26122.0z(005.0)z(H

2

−+−
+−

=                 (4) 

For identification, the experiments use the recursive least squares (RLS) algorithm. The 
limits of control signal and output: umin= -250, umax=250, ymin=0, ymax=250  units and 
noise (if exists) is σ =10-3. In the next figures, there are represented two or more 
functions versus sample point, so both axis label only with units. 
 
Example 1. 

In this example (fig. 2), the setpoint has a trapeze shape. The parameters of 
model are constant but unknown. The process and the model have the same structure.  
Control error e(t), control signal and limits u(t), uminst(t), umaxst(t),  are represented in two 
cases: without noise (1), with noise 
(2). To view control error, it is used 
the relation: e(t)←50+50*e(t). In the 
second case (2), the variance of u(t) is 
larger, but it can be reduced using 
desired values for Ku and Kumed (steps 
6, 7 of algorithm). Initially, the 
parameters of model and the output are 
0; then the parameters are identified 
using RLS algorithm. The position of 
poles and zeros after 160 steps is 
presented in fig. 3 (process and 
model). 

To compare the behaviour of 
control system in different conditions, 
a solution is to use a histogram chart. 
In fig. 5, there are represented the 
histograms of control error for two 
cases: (1)-without noise, (2)-with noise  
σ =10-3. The maximum of error is 
limited to ± 2 units. 
 
Example 2. 
 In this example, the setpoint 
has a trapeze shape (fig.4), the gain 
factor is time variable: it rises from 
0.005 to 0.2, and then decreases to 
0.005 with step 0.0005. Although the 
gain factor has a large variation, the control system has a good behavior. For 360..400 

 
Fig. 2: Example 1: Control system (non-adaptive) 
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steps, the control signal have a large variation because the shape of setpoint will be 
changed after step 400. 
 
Example 3.  
 To improve the quality of 
control system, especially if the 
variation of parameters is large, a 
method is to use multiple models. 
This method is simple but time 
consuming. It is possible to use a few 
models and, at every sample period, 
to choose the better of them (based 
on a performance criterion). In fig. 6, 
using conditions from example 2, the 
behavior of control system is better 
in case 1 (multiple model) 
comparatively with case 2 (one 
model). 
 
Example 4. 
 The setpoint has a trapeze 
shape (similarly with example 2,3); a 
real pole is variable from 0.1 to 0.9 
with step 0.001. In fig.7, the 
histograms of error are: (1)-the parameters of model are unknown but constant, (2)-
adaptive case (variable pole).  
 
Example 5. 
 The setpoint has a sine shape, gain factor is variable from 0.005 to 0.2 with step 
0.0005. In fig. 8, the histograms of  error are: (1)-the parameters of model are unknown 
but constant, (2)-adaptive case without noise, (3)-adaptive case with noise  σ =10-3. 
 
Example 6. 

For adaptive case, the setpoint has a sine shape, a real pole is variable from 0.1 
to 0.9 with step 0.001. In fig. 9, the histograms of error are: (1)-the parameters of model 
are unknown but constant, (2) adaptive case with noise σ =10-3. 
 
Example 7. 

In this example, the setpoint has a sine shape, non-adaptive case. The histograms 
are (fig. 10): (1)-MPC algorithm, (2)-PID algorithm. 
 

4. CONCLUSIONS 
 

This paper presents the study of a model based predictive control algorithm 
applied to motion control. The algorithm uses on-line simulation and rule-based control. 
A (non)linear model of the process, is used directly in control algorithm. The control 
algorithm is able to maintain better set point tracking performance in various 
conditions: variable parameters, variable setpoint etc.    

 

 
Fig. 4: Example 2: Control system (adaptive case) 
case)  
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