
A&QT-R 2002 (THETA 13)
International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

SEMANTIC REPRESENTATION OF PROPOSITIONS USING
FEATURE STRUCTURES

WITH APPLICATION TO ROMANIAN LANGUAGE

Dana Avram

“Babeş-Bolyai” University of Cluj-Napoca, Department of Informatics

Abstract. This paper presents a way of representing semantic and syntactic information
by using feature structure. We used 3BQ trees for semantic representation of a sentence. Then
we traduced this representation into a typed feature structure representation and enriched it with
the syntactic information. We presented an example by using the computing language Prolog for
representing feature structure. We showed that the type hierarchy on which the typed feature is
based on can encode the semantic representation of 3BQ trees. We presented a set of 4 rules that
can be applied to determiners (in particular to articles) so that to transform an original true
sentence in a new true one.

Keywords: semantic representation, syntactic representation, 3BQ trees, AVM’s,
attribute structures for Romanian language, Horn clauses, Prolog, determinants.

1. Introduction
 Over the time was tried the defining of some structures and methodologies for semantic
representations, but many of them isolate them the semantic information from the syntactic
information and was ignored general semantic information (such as the membership of an object
to a category), and, in opposition, a speaker more or less conscious include them in him
propositions [1]. The similarity between this fact situation and the significance of semantic
representation is notable remark.
 The paper presents one of most intuitive method of semantic representation for sentences
that is used frequently in ambiguity eliminating, the 3BQ trees. Starting with a representation of
this type, there is presented a modality of representation with feature structures (and there
representation by AVM’s), that respect the model induced by 3BQ trees semantic representation
and complete them with syntactic and general semantic information.
 More, are presented few rules with can be used to obtain other feature structure that
represent also the semantic information of a truly affirmation from an feature structure that
represent the semantic information of a truly affirmation, different from first, in a similar way with
deduction processes from natural language.

2. The semantic representation using 3BQ trees
 The presented semantic representation formalism in this section is named 3BQ tree
representation (tree branch quantifier trees) [2]. In this type of representation the words that are
member of major grammar classes (nouns, adjectives, and verbs) are translated in predicates with
arguments. The determinants introduce a metha-predicate that have as arguments predicates that
correspond to referred words. All structure is represented as a tree and most of the nods have 3
successors.

1 of 6

A&QT-R 2002 (THETA 13)
International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania
 The nouns are grammar categories which are represented the first and joining them an
essentially role is playing by the determinants (noted Det) [3].
 The nods of a Det constituent will be represented through following tree:

Det

X Rest of proposition Prop(X,…)
Fig. 1 Formal decomposition with 3BQ trees

where the X variable it refer an element from set of elements with Prop property.
 Note that the X variable can or cannot appear in Rest of proposition. The order of
proposition representation is with respect to the following algorithm:

• translate the subject;
• translate the complements, in apparition order;
• translate the predicate.

 As an example, let’s consider the proposition
 Orice student foloseşte un calculator. (Every student uses a computer.)
and apply to it the decomposition described before. The result is depicted in Fig. 2:

calculator

Det(Orice)

X student Det(un)

X Y foloseşte

Y X Y
Fig. 2 Example of proposition decomposition using 3BQ trees

 In this example (Fig. 2) the verb foloseşte is transitive and have (as any transitive verbs)
two successors: first, the subject, and second, the complement. An intransitive verb has (usually)
only one successor and this is the subject. An impersonal verb (ploua, to rain) doesn’t have any
successor.
 The previous tree corresponds to following logical formula:

(∀X)(student(X) ∧ (∃Y)(calculator(Y) ∧ foloseşte(X,Y)))
 The information contained in proposition is formed by a semantic part, and also by a
syntactic part.[1,4] Supplementary syntactic information can later use for semantic analysis in
context. Another problem is how we can operate with tree nodes directly, for getting specific
information or a more general information, as a function of known data for the specific subject.
That it correspond to charging of tree with supplementary information or extending him. Such
mechanism already exists and is defined for another form of information representation named
feature structure. Later, we will show that the feature structures can be defined such that it contains
the semantic information from 3BQ trees and also it contains supplementary wished information.

3. Feature structures

 Let consider a finite set named Feats with attributes (or features) and a set gifted with a
Type inheritance hierarchy.
 A typed feature structure over a set Type and set Feats is an n-order relation:[2,5]
 F = (Q,q,θ,δ),
where:
 Q is a finite set of nodes; q ∈ Q is root node;

2 of 6

A&QT-R 2002 (THETA 13)
International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania
 θ : Q → Type is function of typing;
 δ : Feat × Q → Q a partial function of attributes values.
 In present paper we will refer only to typed feature structures, but we will simple called
him as feature structures.
 A feature structure can be graphic represented as attributes and values matrix (AVM). Let
us note the attributes with f, g, …, types with α, β, …, and feature structures with A, B, …; then
the representation of attributes structure as a AVM is in form:



















α

nA:f

A:f
:A

LL
 For a proposition, the semantic representation using
feature structures can be build with respect to following rules:

• the words is types; language parts are types;
• their role in proposition will be associated with a name: AGENT for subject, PRED for

predicate and CD for direct complement, etc.; more, for complements at this name will be
attached a number, the number of complement type apparition; for a single apparition, this
number can be omitted; the numbering is necessary to avoid apparition of two attributes
with same name in structure of attributes;

• the name of AVM that represent the proposition will be chose as a unique identifier;
Let consider following hierarchy of type inheritance hierarchy, based on example from Fig. 2:

⊥

!prop

!vp !np

!verb !subst

foloseşte !det

!∀ !∃

student calculator

Fig. 3. Type inheritance hierarchy for example from Fig. 2

 The proposition from Fig. 3 a AVM representation can be shown as in Fig. 4.
























































































∃


































∀









































calculatorSYNSEM
DET
subst

SUBST

np

CD

studentSYNSEM
DET
subst

SUBST

np

AGENT

CD
AGENT

folosesteSYNSEM
verb

VERB

vp

PRED

prop

]2[
!

!
:

!

:

]1[:
!:

!
:

!

:

]2[
]1[

!

:

!

:

!

Fig. 4. An AVM structure for example from Fig. 2

 In classic way, the proposition are decomposed by hand in every proposition parts and,
after that, there are identified the speak parts from them [6] The succession of the operation is
obviously in previous representation. Note that there are words from inheritance hierarchy that
have only an organizing role, and cannot appear in propositions as words. To make difference,
these words was prefixed with the symbol !.

3 of 6

A&QT-R 2002 (THETA 13)
International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania
 For easiest identification, we use the convention of noting the types with small letters and
attributes with capital letters.
 This manner of representation will not lose the sense imposed of words order in
proposition and sense of determinants. It can be making a one to one function between elements
of proposition set from a language and a restricted subset of AVM’s [7]
 Now, it is easy to observe that the determinants are operators over the set of AVM’s
constructed such in Fig. 5.

… mi2757 bv2773 a1 … a15

⊥

!prop

!vp !np

!verb !subst

foloseşte !det

!∀ ! ∃ student

calculator

obiect om

student_din_
grupa_215

(object)

(student_from_group_215)

Fig. 5. A completed AVM structure for example from Fig. 2

 Few natural rules induced by presence of the determinants are following described. Let’s
try to extend the hierarchy of types through adding words (types). If we consider that all
computers that we have are named (with unique identifiers) a1, a2, …, a11. The students that are
using these computers in labs time (in number of 9) assume that have the registration numbers
mi2757, au2798, mf2812, ba2730, cr2710, dd2759, dv2708, ku2798, bv2773 (also unique
identifiers in knowledge universe at wish to report the proposition). Completed types structure can
be like in Fig. 5.
 The feature structures use a relation named subsumption.

Intuitively, a feature structure F1 subsumption another feature structure F2 if F2 it contain
more information than F1 or, more preciously, if it contain all information from F1 and, eventually,
more supplementary information [2,5].
 A definition is necessary:
 Let be F1 = (Q1, q1, θ1, δ1) and F2 = (Q2, q2, θ2, δ2) two feature structures.
 Then can say that F1 subsuming F2 iif ∃ h : Q → Q2 a total function, so that:
 1. h(q1) = q2;
 2. if δ(q, f) is defined, then h(δ1(q, f)) = δ2(h(q),f), ∀ q ∈ Q, f ∈ Feats;
 3. θ1(q) = θ2(h(q)), ∀ q ∈ Q1.
 The function h is usually called subsumption morphism. An remark can be made: the
subsuming relation defined for feature structures are assimilated in the logic of natural language
with case of referring a noun joined by the determinant oricare (everything, ∀).

4. Horn clauses and Prolog
 The final scope of preoccupation in semantics is to find a modality of computer
representation for natural language propositions. Most approaching of this desiderate is makes by
logic languages. One of them is Prolog language, which uses Horn clauses [8].

4 of 6

A&QT-R 2002 (THETA 13)
International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania
 Looking for a implementation for:
 Orice student foloseşte un calculator.
we will find:
 foloseşte(X,Y):-student(X),calculator(Y).
 The word order in proposition is not arbitrary. In this Prolog representation, the word
order is lost. The sense of Prolog affirmation is:
 dacă ∀ un student X, şi ∀ un calculator Y, atunci studentul X foloseşte
calculatorul Y (if ∀ a student X, and ∀ a computer Y, then the student X use the computer Y).
 A Prolog program with a given list of students and given list of computers will do
Cartesian product of sets when are questioned with scope:
 foloseşte(X,Y).
 The impossibility to make difference between ∀ and ∃ representation makes Prolog to
enumerate all possible pairs (student, computer). If the proposition has an ambiguity then the
interpretation conducts to a list of possibilities, such in considered case.
 Thus, in this logic, it is possible that all students to use the computer a1, and also it is
possible that every student to use a different computer. Total number of possibilities for choused
case is 11 [8]. This leads to too many data information.
 However, the human mind if are confronted with a situation of this type, for such as
proposition retain the idea (the proposition in a internal form) and do not try to find a concrete
answer by browsing the possibilities.
 In same order of ideas, if someone asks us: “Who and what computer uses?” the normal
answer can be: “I don’t know!”. Probably, our brain has a representation that drive out the cases
with very low probability.

It is clear that the representation with Horn clauses, although rigorous, can’t transpose the
human way of words semantic representation. The problem appears from impossibility of exact
reproduction of determinants. The Prolog allow us to use the cut predicate, that lead to number of
solution limitation to only one solution, that is more closely to natural speaking. However, that is
not enough.

5. The ∃ and ∀ in determinants and link between them
 Most used determinants in natural languages are the articles. These have a semantic that
contains the sense of ∃ or ∀ of joined noun.
 The indefinitely singular article say us that ∃ the material object that it correspond to the
given noun. This has a decisive role in context; we referred him and will refer in follows.
 The definitely plural article “toţi” (all) has the sense of ∀, and joining noun can be
referred more or less in context.
 The indefinitely plural article indicate the existing (∃) of one or more than one objects of
respectively type. Few rules are necessary.
Rule no. 1. From semantically point of view it can be easy observed that if in a truly proposition a
word (specifically noun) is joined by ∀ determinant, then by replacing in the proposition the word
with a word that correspond to a more specific type (from types hierarchy) than given word, then
we also get a truly proposition. As example, starting from the proposition:
 Orice student foloseşte un calculator.
(Any student use a computer.) we can say (see Fig. 5):
 Orice student_din_grupa_215 foloseşte un calculator.
(Any student_from_group_215 use a computer.)
 Feature structures that correspond to the first proposition subsume the feature structure of
second proposition. That is not the case of ∃ determinant. For given proposition:
 Un student_din_grupa_215 foloseşte un calculator.
(A student_from_group_215 use a computer) we cannot say that:
 (Studentul) mi2757 foloseşte un calculator. (The student mi2757 use a computer)
In such a situation we can only estimate.

5 of 6

A&QT-R 2002 (THETA 13)
International Conference on Automation, Quality and Testing, Robotics

May 23-25, 2002, Cluj-Napoca, Romania

6 of 6

E posibil ca (studentul) mi2757 foloseste un calculator.
(It is possible that the student mi2757 uses a computer.)
Rule no. 2. Now, is easy to observe that we have the relation: ∀ implies ∃, and not vice versa. We
can say that:

Daca orice student foloseste un calculator, atunci un student foloseste un calculator.
(If any student use a computer, then a student use a computer.) If we descend in types hierarchy
(to the general) from a given expression, there are satisfied following rules about the ∀ and ∃
determinants:
Rule no. 3. ∃ remain ∃. As example:

Daca mi2757 foloseste un calculator, atunci un student foloseste un calculator.
(If mi2757 uses a computer, then a student uses a computer.) As well true, but less used in current
language is the implication:
 Dacă orice student foloseşte un calculator, atunci orice student foloseşte un obiect.
(If any student uses a computer, then any student uses an object.)
Rule no. 4. ∀ becomes ∃. For example:

Daca orice student_din_grupa_215 foloseste un calculator, atunci un student foloseste un
calculator.

(If any student_of_group_215 uses a computer, then a student uses a computer.)

6. Conclusions and remarks
 For semantic representation of a proposition the 3BQ trees are used. This representation
was made by preloading of information from 3BQ trees to the feature structures. Additionally,
joining this information in feature structures, there are stored supplementary information, like type
of proposition parts and type of speaking parts. These are syntactic information (subject, predicate,
…) and morphologic information (noun, verb, …).
 Type’s hierarchy that is base for feature structure includes the information that belongs to
the semantic type (student – man). Are used this belonging for characterization of semantic
information that are carried up by the determinants (such that are showed in case of articles).
 A set of transformation rules that keep the initial truth value in newly resulted proposition
are defined.
 The modality of proposition representation from Prolog perspective through Horn clauses
is exposed and was showed why this perspective is not sufficiently.

References

[1] Allen, J. (1995), Natural Language Understanding, The Benjamin Cummings Publishing
Company, New York.
[2] Carpenter, B. (1992), The Logic of Typed Feature Structures, Cambridge Tracts in Theoretical
Computer Science, no. 32, Cambridge University Press, New York.
[3] Gal, A., Lapalme, G., Saint-Dizier, P., Somers, H. (1991), Prolog for Natural Language
Analysis, John Wiley, London.
[4] Jurafsky, D., Martin, J.M. (2000), Speech and Language Processing, Prentice Hall, Inc.,
University of Colorado, New Jersy, USA.
[5] Tatar, D., Avram D. (2000), Phrase Generation in Lexical Functional Grammars and
Unification Grammars, Studia Universitatis „Babes-Bolyai”, vol XLV, pag. 69-78.
[6] Polard, C., Sag, I.A. (1994), Head-driven Phrase Structure Grammar, University of Chicago
Press and Stanford CSLI Publications.
[7] Francez, N., Wintner, S. (1998), Feature structure based linguistic formalisms, draft, http.
[8] Tatar, D. (1994), Logical Grammars as a tool for studying Logic Programming, Studia
Universitatis „Babes-Bolyai”.

