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ABSTRACT    

 
 There are proposed a few applications examples of an algorithm that uses on-line 
simulation and rule-based control. A compare between this algorithm and PID control is 
presented. Some examples are used to indicate the control parameters choosing. 
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1. INTRODUCTION 
 

In [7], it is presented some theoretical aspects of an adaptive-predictive 
algorithm that uses on-line simulation and rule based control. In a practically 
implementation, the algorithm A1 [7] can be write: 

 
STEP 1: Output measuring y(t); up-date input u[.] and output y[.] vectors 
STEP 2: Up-date counters that define conditions of algorithm function: 
 IF Vsta=0 
      THEN Csta=0; Csta1=0; { transitory regime } 
       IF umin<u(t)<umax THEN Csta=1; Csta1=1;   {Start stationary regime} 
      ELSE  Csta++; Csta1++; { stationary regime } 
       IF Csta1>Vsta2 THEN Csta1=Vsta1 
      {0<Csta ≤ Vsta1     -initial part of stationary regime 
        Vsta1<Csta ≤ Vsta2  -stabilization part of stationary regime 
        Csta>Vsta2     -final stationary regime} 
STEP 3: Test if the algorithm works well in stationary regime: 
  IF |y(t)-yr(t)|>∆p AND Csta> Vsta2 
       THEN Csta=0   {perturbation regime} 
STEP 4: Identification: 
   IF Csta<Vsta3  { Vsta3> Vsta2 } 
        THEN execute RLS algorithm 
        ELSE execute additive correction  
STEP 5: Up-date umaxst(t), uminst(t): 
   IF Csta<Vsta1 THEN amed(t)=0; umaxst(t)=umax; uminst(t)=umin; 
     ELSE   amed(t)=kaamed(t-1)+(1- ka)|yr(t)-y(t)| 
      umaxst(t)= umaxst(t-1)-kst[umaxst(t-1)- ust(t)]+kaamed(t) 
      uminst(t)= uminst(t-1)+kst[ust(t)-uminst(t-1)]-kaamed(t) 
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        Limit uminst, umaxst to perform next conditions: 
 umin ≤ uminst(t)<umaxst(t) u≤ max 
 umaxst(t)- uminst(t)> dust 

STEP 6: Simulate the behaviour of system for control sequences: 
  u1(t)= { uminst,uminst,..,uminst } Find ymax0. 
  u2(t)= { umaxst,uminst,..,uminst } Find ymax1. 
  u3(t)= { uminst,umaxst,..,umaxst } Find ymin0. 
  u4(t)= { umaxst,umaxst,..,umaxst } Find ymin1. 
STEP 7: Use simulated dates: 
   Compute variable reference: yr1(t)=yr(t)+kref[y(t)-yr(t)] 
   IF ymax0<yr1(t) (corresponding to u1(t) sequence) AND 
  ymax1>yr1(t) (corresponding to u2(t) sequence)     
  THEN  choose: 
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             ELSE  
  IF ymin0<yr1(t) (corresponding to u3(t) sequence) AND 

  ymin1>yr1(t) (corresponding to u4(t) sequence)     
  THEN  choose: 
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  ELSE 
   IF ymax0>yr1(t) (corresponding to u1(t) sequence) 
  THEN choose u(t)= uminst(t) 
  ELSE 
   IF ymax1<yr1(t) (corresponding to u2(t) sequence) 
  THEN choose u(t)= umaxst(t) 

 ELSE  choose u(t)=u(t-1) 
STEP 8: Compute the average of controller’s output: 
  umed(t)=kumedumed(t-1)+(1-kumed)u(t) 
   Compute the estimate value of controller’s output in stationary regime: 

                         ust(t) r
m21

n21 y
b..bb

a..aa1
+++

++++= (t) 

STEP 9: u(t) filter: 
    IF Vsta2<Csta 
  THEN u(t) ← kuu(t)+(1-ku)umed. 
  

 2. APPLICATIONS 
 

Based on these rules and on-line simulation there were developed algorithms for 
linear/nonlinear processes, constant setpoint (A1 algorithm [2]) or variable setpoint (A2 
algorithm [2]), adaptive/nonadaptive case. The algorithms were tested both in 
simulation (DELPHI applications) and in real time control (using 80C552 
microcontroller and DELPHI)[2], [3], [4].  Next, it is presented a few examples, which 
indicate the control parameters choosing.  
Example 1  
Let’s consider the process (P1) [1]: 
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)d3t(ub)d2t(ub)d1t(ub)3t(ya)2t(ya)1t(ya)t(y 321321 −−+−−+−−+−−−−−−=
where:           y[.]: process’s output;  u[.]: controller’s output; 0≤ u[.] ≤ 250;         
A[.]=[1 -2.43492 1.97629 -0.53468];  B[.]=[0.000948003 0.004438182 0.001296496];  
Static gain is k0=1; d=1   is dead time; t: discrete time (0 ≤ t ≤ 75). 
Remark:  In the next figures only the 
setpoint (SP- yr(t)) and process’s 
output (PV- y(t)) are represented at 
true scale. Controller’s output (OP- 
u(t)) is represented u(t)/3. Notations 
from legend (figure1) are used in 
figure 2..13. Here, yr[0]=0 and 
yr[t]=150 for t>0, u[0]=0 for  t ≤ 0 
and u [t]=150 for t>0. 
For PID tune, it was used Ziegler-
Nichols criterion.  

This example shows the advanta
shorter time response, no override. A
larger variance of u(t), but this varianc
 
Example 2 
Conditions: the setpoint has a 
variable shape, the model is accurate 
(nonadaptive case), umax=250, 
umin=0, kref=0.2, ku=1, ka=0, Vsta1=5, 
Vsta2=50, dust=5, it is not use 
information about setpoint changes. 
This example shows the effect of kst 
choice in STEP 5. 
 
Example 3 
Conditions: analogous with example 
2; kst=0.0. This example shows the 
effect of  kref choice in STEP 7 if 
kst=0.0. In this case, the time 
response is minim, but the variance 
of u(t) is larger. Other parameters: 
ku=1, ka=0, Vsta1=5, Vsta2=50, dust=5. 

 
Example 4 
Conditions: analogous with example 
3; kst=0.1. This example shows the 
effect of kref choice if in STEP 7 if 
kst ≠ 0.0. 
Other parameters: ku=1, ka=0, 
Vsta1=5, Vsta2=50, dust=5. 
If kst ≠ 0.0, in stationary regime, the 
difference umaxst(t)- umnist(t) will 
decrease.  
 

 
Fig. 1: Example 1 
ges of A1 algorithm, comparatively with PID: a 
 possible drawback in some applications is a 
e can be reduced if it is necessary. 

Fig. 2: Example 2 
Fig. 3: Example 3 
Fig. 4: Example 4 
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Example 5 

Fig. 5: Example 5 

Conditions: kst=0.05, kref=0.1. This 
example shows the effect of ku 
choice and indicates a method to 
reduce the variance of control signal 
(STEP 9). But if ku is quite small, it 
is possibly small oscillation on 
output.  
Other parameters: ka=0, Vsta1=5, 
Vsta2=50, dust=5. 
 
Example 6 
Conditions: the static gain (k0) is 
changed from 1 to 1.6 with 0.2 step; 
a model-based adaptive-predictive 
control (A1) has been used; 
The estimate of static gain is k0est. 
The forgetting factor is λ=0.98, 
kst=0.15, kref=0.2, noise:  σ =0. 
Other parameters: ku=0.5, ka=2 
Vsta1=5, Vsta2=10, Vsta3=10, dust=5. 
If the difference between process 
and model is quite larger, the control 
algorithm will compute a wrong control signal and it is possibly to appear significant 
errors (for example at step 498 the override is 16%). A method to reduce this effect is to 
choose cautions value for parameters, especially for kst and kref. 

 
Fig. 6: Example 6 

Example 7 

 
Fig. 7: Example 7 

Conditions: analogous with example 
6 but λ=0.94. 
This example shows the effect of 
forgetting factor (λ) choosing. If  λ 
is small, the identification algorithm 
works faster. Compare example 6 
and example 7. But in real case, if λ  
is quite small it is possibly to appear 
significant oscillations in parameters 
identification. 
 
Example 8 
Conditions: analogous with example 
7 but Vsta3=30. 
This example shows the effect of 
Vsta3 choosing. This parameter 
indicates when the RLS algorithm is 
stopped and it is changed with a 
additive correction (STEP 4). In this 
example, the RLS algorithm works a 
longer time than in example 7. Fig. 9: Example 8 
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Example 9 
Conditions: analogous with example 
8 but noise:  σ =10-3. 
This example shows the effect of 
noise: small oscillations in 
parameters identification. The 
variance of control signal increases. 
Compare example 9 and example 8. 
But if the process permits this 
variance, it leads to faster 
parameters identification. 

 
Fig. 9: Example 9 

 
Example 10 

Fig. 10: Example 10 

Conditions: analogous with example 
6, but it was used PID control 
(without static gain estimation). 
If differences between process and 
model are larger, than appear big 
override. It is necessary to introduce 
a identification component. 
 
 
 
Example 11 
Conditions: analogous to example 
10 but it was used static gain 
estimation k0est. The forgetting 
factor is λ=0.98. It is used a adaptive 
PID control. Comparatively with 
example 10, the quality of control 
increases, especially after 
parameters identification. But initial, 
when the difference between process 
and model are larger, appear big 
override (see steps 175, 340, 500), than, after parameters identification, these overrides 
decrease (see steps 225, 380, 540). Comparatively with example 8 in the same 
conditions, the variance of control signal is smaller, but this small variance leads to 
delay in parameters identification. 

Fig. 11: Example 11 

 
 
Example 12 
Conditions: analogous to example 
11 but the forgetting factor is 
λ=0.94. Comparatively with 
example 11, the parameters 
identification is faster, but the 
outputs have the same behavior. 
This is due to characteristics of PID  

 
Fig. 12: Example 12 
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control. Compare with example 7 and 8 where was used A1 algorithm. 
 
Example 13 
Conditions: analogous to example 
12, but noise:  σ =10-3. 
If variance of u(t) and λ are quite 
small, it is possible an unwell 
identification (425..475 steps). 
Compare example 9,12,13. PID 
algorithm leads to a quite small 
variance of u(t). 
 
 
 

3. CONCLUSIONS 
 
 This paper presents some examples, which permit to choose the parameters of an 
adaptive-predictive algorithm that uses on-line simulation, and rule based control. It was 
used a DELPHI application; the user can easily choose and modify the parameters of 
process, model and control. Also, it is presented a compare between adaptive-predictive 
control and PID control. The parameters of algorithm can be choosing in large limits 
and can be optimized using a supervisor algorithm. 
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Fig. 13: Example 13 
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