
A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation,

Quality and Testing, Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 1 of 6

REAL-TIME DISTRIBUTED MULTIMEDIA PROCESSING

Authors: Gheorghe Sebestyen Lecturer, Cristian Trebea student

Technical University of Cluj-Napoca, Computers Department
E-mail: Gheorghe.Sebestyen@cs.utcluj.ro

ABSTRACT
Modern Internet communication often involves timely multimedia data transmission,

processing and visualization. Real-time multimedia processing requires high performance
capabilities that, usually, exceed today’s desktop computers’ possibilities. This article presents a
distributed multimedia processing solution that enhance the performance of a single desktop
computer by using the idle processing capabilities of other computers connected on the same
local network. The basic idea is to dynamically distribute multimedia processing tasks and data
to a number of partner computers and execute them in a parallel fashion. A special scripting
language was developed to describe the processing sequence in a way that allows distributed
execution.

Keywords: multimedia, real-time, distributed execution

1. INTRODUCTION
Today, distributed processing is one of the key-solutions for complex, regionally

spread applications, from usual Internet communication services, to databases, e-
commerce or e-business. Distribution offers a number of advantages such as: a higher
reliability and availability, a better use of existing resources, remote access to common
data, higher performance at low cost and many others. But distributed design requires
new application models, methodologies and tools. New complex tasks, like process
synchronization, concurrent access to common data, data consistence, communication
delays and error masking, etc., must be solved in a transparent way.

In the last ten years a number of new technologies were developed, as support for
distributed application design. Some of the most used technologies are: client/server-
base services, RPC (Remote Process Control), COM, DCOM, and CORBA and web-
protocols (HTTP, CGI, XML, etc.). These technologies offer transparent access to
remote data, processes, or services, which means that the end-users are not aware of the
distributed nature of the requested services.

There are still few solutions for real-time distributed applications. Communication
delays are difficult to mask in time-critical applications, such as multimedia
communications or remote process control. In multimedia applications a constant and
highly periodic data flow must be assured; in remote control closed loop deadlines must
be guaranteed. The design of such applications is more difficult if complex data
processing tasks must be executed in predefined time limits.

 This article presents a distributed multimedia-processing model that increase the
responsiveness of a desktop-station involved in a time-critical multimedia

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation,

Quality and Testing, Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 2 of 6

communication. The performance of the desktop-station is enhanced by distributing the
multimedia processing tasks to partner desktop-stations.

2. PROBLEM DEFINITION
The goal of the present research work is to develop a framework for distributed

processing that improves the execution time of relatively complex multimedia
processing task sequences.

Usually, multimedia processing implies quasi-standard procedures such as: periodic
data reception and transmission, filtering, data coding and decoding, compression and
decompression, visualization, etc. These procedures are applied to an input data stream
continuously, in a predefined sequence. At the end, an output data stream is generated.
The processing sequence must be executed in the shortest time. The time will depend on
the complexity of the processing sequence, the quantity of input data and on the
available processing resources. A “best-effort” solution is requested under the above
conditions.

The system must have an input data channel, an output data channel, which may be
configured as communication channels (network sockets), as files, or as input/output
interfaces (e.g. web-camera, video terminal). The data processing sequence is
predefined in a scripting language. The language must offer support for periodic and
continuous data processing. The data must be structured in frames specific for
multimedia data (video and audio data).

The system must have the possibility to distribute and collect data to and from
computers organized in a processing cluster. It also must have the means needed to
distribute processing tasks, to activate and stop them remotely and to synchronize and
reorder the results. Task allocation must depend on the available resources and on
effective workload of the partner computers. The allocation scheme should offer the
best response time for a given resource configuration.

3. THE FRAMEWORK’S ARCHITECTURE
Figure 1 presents a generic scheme of the proposed framework. The system is

composed of a Coordinator computer and a number of Worker computers. The
coordinator is responsible for receiving the input data stream, for generating the output
data stream and for allocating processing tasks to Worker computers. A Worker is a
computer connected on the same local network with the Coordinator, and is “willing” to
execute processing tasks.

Figure 1 Bloc scheme of the proposed framework

Input
channel

Output
channel

Worker1

DLL DLL DLL

LAN

Processing
module

Processing
module

Worker 2

Worker n
 Processing

module

Script

Scheduler
module

DLL

Processing
module

Coordinator

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation,

Quality and Testing, Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 3 of 6

The Coordinator contains a Scheduler module, a Processing module and a Library of

multimedia processing tasks (DLL). The Scheduler is the main part of the framework,
that solve the following tasks:

- parses the Script that describes the input and output data formats and the
sequence of operations needed to process the input data

- analyzes data dependences and determine possible micro-sequences that may
be executed in parallel

- determines the processing cluster’s configuration (number of Worker
computers and their workload)

- allocates data frames and processing tasks to Workers based on an
optimization policy

- gathers the results, reorder them in accordance with the original Script and
generate the output data stream

The Library contains a set of predefined multimedia procedures organized as a
dynamic library. These procedures are the building blocks of a processing sequence;
they are called from the Script. The Coordinator contains a complete library with all the
predefined procedures. During execution, some of the procedures are loaded on the
workers’ local libraries if the scheduler allocates the corresponding operations to those
computers.

A Worker computer contains a Processing module and a Library of local
procedures. The Processing module receives requests from the Scheduler to process data
frames using some predefined procedures. If a requested procedure is not contained in
the local library than a procedure-download sequence is initiated. The procedure is
transferred from the Coordinator to the Worker. If later the procedure is required again,
there is no need for a new download.

A Processing module may be contained even in the Coordinator computer. For some
small processing sequences it is not efficient to transfer a significant quantity of data to
another computer, so it is executed locally. The Processing modules are “sleeping”
memory resident tasks, activated whenever a new request is received from the
Scheduler. They may be executed as background tasks when the computer is idle.

The scheduler uses a periodical pooling procedure to detect the active Processing
modules. These modules form a processing cluster. The cluster’s configuration may be
changed during the execution of a script. The scheduler reorganizes the workload
whenever a module becomes unavailable.

4. THE PROCESSING SEQUENCE DESCRIPTION LANGUAGE
A special language was developed to describe the data structures and processing

sequences involved in a multimedia application. This language contains specific
elements for multimedia data transmission, manipulation and processing. It also
contains instructions for system initialization, configuration management and task
distribution,

The language accepts four types of variables:
- local variables - used as temporary data storage inside of a single loop step
- global variables – used to transfer data between different steps of the execution

loop
- file IO variables – used to denote an input or output file
- network IO variable – used to denote a communication channel

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation,

Quality and Testing, Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 4 of 6

A Script describing a specific processing sequence has two parts: an initialization
part and an execution part. The initialization part is used to set the system’s
configuration flags (e.g. timing limits, synchronous/asynchronous data access, task
allocation policy, etc.), to declare variables and to specify the input and output data
streams.

The execution part consists of a main execution loop that contains executable
instructions. The following instructions are defined:

- get(stream_var, memory_var, size) – transfers a block of data of the specified
size from the stream_var (file IO or network IO) to the memory variable (local
or global)

- skip(stream_var, size) – moves the stream pointer forward with a number of
locations equivalent to the size of a data block

- exec (destination_memory_var, source_memory_var, dll_procedure) – applies
the dll_procedure to the source variable and the result is placed in the
destination variable; the variables are data blocks

- put(stream_var, memory_var, size) – transfers a block of data of the specified
size from the memory variable into the stream variable

The “exec” instruction is the only one that may be allocated to different worker
computers. The scheduler module distributes data and activates dll procedures in remote
locations. Based on the data flow analyses, data dependences are detected and parallel
executions are lunched. More steps of the main loop are executed in parallel. The results
may be generated in an “out of order” manner. The scheduler reorders the data in the
output stream in accordance with the original order specified in the sequential script.

5. TASK ALLOCATION POLICY
An important factor in the efficiency of the proposed distributed processing

framework is the task allocation policy. The scheduler must generate a task allocation
scheme in accordance with the available resources and with the required processing
power. The communication delays and the data transfer times also mast play an
important role in the final decision. A processing cluster may contain computers with
different resources and performance parameters. Also the number of computers in the
cluster may change dynamically. Different multimedia processing tasks require different
execution times. The execution time depends on the computers’ performance
characteristics.

In the present implementations two allocation policies are used: a simple uniform
load algorithm and a time-based algorithm. The first algorithm is recommended when
the computers of the processing cluster have similar performance characteristics. The
idea is to distribute tasks equally between the computers of the cluster. Some data
dependences are taken into account to avoid unnecessary data transfers; tasks working
on the same dataflow are allocated to the same computer.

The time-based algorithm is more complex and offers a better efficiency when the
computers of the cluster have different characteristics. The scheduler measures the
response time of every computer for a standard task and measures the transmission time
of a predefined block of data through the network. Also the nominal execution times of
different multimedia procedures are taken into account. Based on this information the
scheduler generates an optimal task allocation scheme. The allocation algorithm
computes the delays for different allocation solutions and selects the one with the
shortest delay. It is a step-by-step algorithm, in which the worker computers are

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation,

Quality and Testing, Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 5 of 6

progressively loaded. For simple procedures it is not efficient to transfer a significant
amount of data through the network. It is also possible to execute such a procedure by
the local processing module.

6. EXPERIMENTAL RESULTS
The implemented multimedia-processing framework was tested under a number of

conditions. The following parameters were modified:
- the complexity of the processing sequence,
- the size of a data block
- the transmission frequency of the network
- computers with different performance characteristics
The measurements were compared with a single computer version. In most cases the

execution time was smaller. The time reduction was more significant for complex
processing sequences and when high seed networks were used. For simple processing
sequences the scheduler decided to execute the operations locally, avoiding the
transmission delays.

A significant improvement was experienced in video application, where a sequence
of image filtering and enhancement operators was applied to a stream of video frames.
For the best configurations a 2 to 3 times execution time reduction was obtained. This
enhancement in processing speed allowed to implement on-line applications, which
otherwise, on a single standard desktop computer wouldn’t be feasible.

7. CONCLUSIONS
This article presents a network-based, distributed framework that improves the

responsiveness of a multimedia processing system. The basic idea is to distribute
multimedia-processing tasks’ execution into a cluster of computers connected on a local
area network; a significant execution time reduction is obtained through parallel
execution of tasks. A special scripting language was developed and used to describe the
processing sequence. Through a parsing and data flow analyses the processing sequence
is portioned in procedures that may be executed in parallel on remote computers.

A scheduling module is responsible for distributing tasks to the computers of the
processing cluster. A uniform load or a time-based algorithm may be used as the
allocation policy. The second one determines an optimal allocation solution for a given
configuration and workload.

The experiments showed the feasibility of the proposed solution. Significant time
reductions were measured for video stream processing. The presented distributed
framework allows the implementation of some on-line processing sequences that cannot
be implemented on single computer architecture.

The proposed solution may be extended to other applications where execution time
is a critical factor.

8. REFERENCES

1. Coulouris G, Dollimore J, Kindberg T, [1994], Distributed Systems: Concepts and
Design, Addison Wesley,

2. Hansson H, Gunningberg P, Flack H, [1994], Distributed Real-Time Systems
Technical Report, Royal Institute of Technology Stockholm, Sweden

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation,

Quality and Testing, Robotics
May 23 – 25, 2002, Cluj-Napoca, Romania

 6 of 6

3. Kalogeras A, Stamatis K.L, Efstathiou K, [1993], An Implementation of an
Intelligent Distributed Real-Time System, Proc.of the 8th Int. Symposium on
Intelligent Control,Chicago, USA,

4. Shatz, Sol M., [1993], Development of Distributed Software: Concepts and Tools,
Maximilian Publishing Company,

5. Ghe. Sebestyen , K. Pusztai, [1999], A Service-Based Distributed Real-Time
Control System,12-th International Conference on Control Systems and Computer
Science, CSCS99, Bucharest, pp227-231

6. Ghe. Sebestyen, G. Buzas, [1999], Distributed Services in Control Systems,
OSPMA-FieldComms99 Conference, Open Solutions for Process and
Manufacturing Automation, Telford, UK,

7. Stankovic, J.A, [1992], Distributed Real-Time Computing: Next Generation, Jornal
of the Society of Instrument and Control Engineers of Japan,

