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Abstract: The algorithm of the dynamic control functions (IDM) achieves a complex study
regarding the behavior of any mechanical robot structure. Beside the dynamic control functions,
determined with various models, the dynamic functions of the operational variables can be also
analyzed. In the frame of this paper, on the basis of new formulations the expressions of the
accleration energy, and then its mapping within of the matrix dynamics equations will be
analyzed. The aove dgorithm (IDM) is included in SmMMECROb Smulator devoted to study
concerning the assesament of the kinematics performances, dynamics, and acairacy respectively
for whatever medhanical robot structure, regardless of its type and geometrical form.
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1. INTRODUCTION

Theroba control can be defined, in asmplified form, by means of the equation:
Qt) = 6(t) = X(t) . 1)
The robas perform some techndogica processs the high values for the kinematics and
dynamics accuracy performances are required in. That is why, the roba dynamics cortrol
becomes a compulsory condtion. The fundamenta equations of the dynamics in the form
of symbadlic show as below:

o0)= tlo, 0 ©,0- BOEOEE  Qub)=[atri=1-n] . @
Abowe, Q,,(t) represents the clumn vedor of the generalized driving forces from each
joint of roba, aso cdled the matrix function of the dynamic control. First equation from
(2) refersto the direct dynamics mode and the second to the inverse (IDM).

The dgorithm of the dynamic control functions (IDM) is included in
SMMECROb Smulator, [2] and [3]. It achieves a complex study regarding the
kinematics behavior and dynamics respedively to whatever mechanical roba structure.
Thus, beside the dynamic control functions, the dynamic functions of the operational
variables can be likewise analyzed. Within of this paper a matrix algorithm based onthe
aaceleration energy will be described in anew formulation. In the first time, the forward
kinematics formalism will be described. Its main matrix expressons will be cdled in the
aaceleration energy, and then dynamics equations of the medhanicd roba structure.
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2. THE FORWARD KINEMATICS FORMALISM

So as to define the direct kinematics modeling (DKM), in the Fig. 1 it has been
represented in a symbadlicad form
the medanical roba structure
(MRS) with n d.o.f. The (n) kinetic
links are joined by driving joints of
fifth  oder symbdized as
{R-rotation; T-trandlation}, and
considered mechanically perfed.
In keeping with the forward
kinematics formalism [2] and [3]
the DKM eguations can be written
in asymbdi cd form asfoll OWS:

(mox0)=tlo()] ox=tlg:a)
(”)Ox— f(e 0; 9) ©)
{5; 9 9 & gn)ox; (Mo (”)Oig.
First set of vedors, above shown,

describes the motion from every driving joint, while the second charaderizes the motion o
the end-effedor in the Cartesian space Their components are expressed by the symbadls:

o) 60: 60 FHat): ) 4@k i=1-n]"; @

(o Eﬁ(t)_g (a®)®;i=1-n); j=1- GPE (o = [n)o v (g ]
20p B0 =l i=1-3{a; j=a- )5 s - [nxn wwor]

Fig. 1

NG

According to SMMECROD [3], by applying the paynomia interpadating functions
of either 4-3-4th or 3rd order, the matrix of the kinematics control functionsis establi shed:

e - ae'koe*k(r) 6.6 k=1-m] A ©
[q]k q]k() q]k ] k=1- } a
where k=1 - m isthe configuration number taken into study, while r,_; <t <7, isthe

acdual time variabl e between the two successvely configurations of the roba structure.
In kegping with [3] and [4], the Jacobian matrix algorithm will be short

described so as to determine the DKM equations. The main steps are shown below.

» From DGM Algorithm, the foll owing hamogeneous transformation matrices are cled:

{Hrlla®l Slo,©:i=1-1] Al @:i=isa-nl i=aanf
IMla@); j=1-i-1; k= j+1-i; i=1-n]. 7)
* The next loops:{i=1-n;j=1-i;k=1- j} are opened. In order to describe the
expressonstypicd of the ébove loops, the next notations have been implemented:

o ={f1i=RE {o;i=T}} G =700k ; 1=+l ®
Above, the operator A, shows the driving joint type from the MRS, and 'k; the unit vector
of the driving axis expressed with respect to proper frame{i}.
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* At beginning, the matrix-deriving operator is defined by means of the next expresson:
'k A Ik f1-A D
U; =T, Eg ki X} k-4 )D; 9)
50 0 0 0 g
where {‘lZi 2, x} the skew-symmetric matrix asciated to urit vector'k; is call ed.

* The differentia matrices of first and second order are defined with the expressons:

0 $rlw;dfr] 2 Cr]w, Er]w; dfr
Aj= Aji = El!%% R) A (ﬁ)g; Aik= Ay = Dgﬁqjk(R) Aijk(l_J)E O - (10)
000 OFF Ho00 08 §

* Every column from the Jacobian matrix and its time derivative of first order, expressed
with respect to frame either {0} or {n}, are determined with the next expressons:

O n N\ O
0 af(s) O 0 S Adi (), 0
0 i) O o & .
R DU B ; 0j, = GD ....................... e 0 (12)
Rk o 5 03, MRm TR D
* The Jacobian matrix and itstime derivative, in the two frames {0} and{n}, iswritten as:
?3,6)0 0 o 0 ZHR [0l He;5)g
%)= O q )EE @3, =0 M =1 n0; "3(e)= %[o] IR B (e)f; (12)
B)JQ(G_)Q H EQME H % ”Rﬂ]( ) g
P60 0 s 0 ZHR (0] Hoj5)E
%)= O q )% 93, =02V 0 =1 nO: "i(@)= %[o] °[R"g (e)f; (13)
BDJQ(_)E : 2o 8 H g "R () g
O D2may(p) O _ L O 0 Aq(p) O C
OJB(Zg):%]gzg ......... e E Ij_:::-:ln_} :]-E, OJng):%]g:B ........... e E i=1-npC
Gl E HA; (R)ik; 4, E (e E A (R)K 4, E

where {3, (6)}°3,, (6)} thelinear and angular transfer sub-matrix have been call ed.

* Using the Jacobian matrix with its time derivative, above written, the DKM equations
with resped to frame {0} and {n}, are defined by means of the next matrix expressons:

gw (nmwT]TD 0 o] (o36)  [o] [o] DE [5T 5T]T c

Jobey har | o) Bl ) Wac) % b

Remarks. The DKM equations (14), established on the basis of the Jacoblan matrix
algorithm above described, will express the motion of the end-effector in the Cartesian
space. The same results will be likewise called in the next section devoted to establishment
of the acceleration energy for whatever mechanical robot structure taken into study.

OO0

(14)
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3. THE ACCELERATION ENERGY

It is known that, the dynamics equations to whatever mechanical system with
n d.o.f., as example mecdhanicd roba structure (MRS), are defined by means of the
formalisms typicd of the analytica mechanics [1] and [2]. But, the same equations can
be likewise expressed by extending of the dynamics gudy uponthe acceleration energy.
In kegoing with analytical medhanics, its defining expressoninto first form shows as:

1 . 1 - C - - _— i . P _
ZEEIVJ-Z [em==0 oy, m; =g Hepxdg Hepxd @) xig (15)
Considering Fig. 2,the accderation d the dementary mass dm continue distributed in
thekinetic link (j) from (MRS), seeFig. 3,is symbdlized by ! v Whl|e{ Ve, s wj;jéj}

represent the parameters typical to ageneral motion d the same link, suppcsed as rigid.

link j
(dm) (my; Vo) @)

A
2l \V\v\ ngjg

ot}

$0} ntl fn+1

Fig. 2 Fig. 3

Performing the cadculus in (15), the defining expresson d the acderation
energy takes anew general form written below as:

O 1
H (- 1)AmE'1WEH—EM mVc E]VC D+
a=0 M 0

E (16)

Hio oo o

Abowe A, ={{— 1; General Motion};{O;TransIational Motion};{l; Rotation Motion}};

- P P T P P i
andJIJ =I{Jrj X}{Jrj X} mm, lej =J-Jrj|j|ro Cdm. (17)
They are known as either inertia tensors or matrices of the mechanical inertia moments.

Taking into study the symbadls from Fig. 2 and Fig. 3, the same accderation
energy will be dso determined under form of anew matrix expresson as foll ows:

0 dE} . L El'race[oﬁ AT Bjm]z L [Oﬁ BT Edm]g
M gt g . 0= 0. (18
Hgﬁri ks fomg % —Err[P[T]Dr uAl Edmﬂ[T]T u %
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Mappi ng the massintegral onthe whale link (i), theintegral expr&sion IS written as:
= e B[t i o] °[T] = s A+ 53 A

EL= D, (19
T
% —El'r[p[T]Dl psﬂ[T] . Q | psi =I'f mri
Performing the cdculusin (19), it yields the next expresson d the accéeration energy:
L n i
%Z Z Z Tr[A] ml psi D%m]ch Eqm"' Z Z Z ZTV[AJ ml psi DO\km qj mk mm H
Ea= 1=1)= [ ] D(ZO)
g +_ TrlA: mlsi U v A P T 0
E 2. gljzlkzlg Z: r A]k p! MI B:]J mk lj:]l |]Z] E
In keeping with [3], the next notations, and then dynamics matrices are implemented:
_ O n i=1-n O
M@)=M; =M ; = Tr|A; (1 N : 21
( ) %Vlj . k:mazx(i;i) r[Ak P mkj] J=1- ”E &
)G 1 j=l-n O: 0
. = .. = .. = |ﬁ . = - .
V(@,Q) g Eﬂ%/um Vim - mljmTr[Akl | psk DAkjm] mzlangm’ =1 rE ;
-\ O [ l=1-n 0O+ |—1—»nE
DIB:6)=0" 0D, == Tr[A: (1 o T
( ) g E[g)ﬂ e 1:m) r[AkJ pskDAkl] 1—»n5 J—l—»nE
0 i=1-n C
BEO)= Vim =Viny = Tr[Ak,m O] j=1-n-1 F (22
k=max(i;j; m .
H m=j+1-nf
_ OJ n i=1-n C
= e, — |ﬁ T .
C(@) %/UJ k:mazx(i;j)Tr[Akl I psk DAij] J =1 nE
Corsequently, the new matrix expressjon d the a(c:el eration energy, finaly, shows as:
L n
%Z ZM” |]:LQJ +Z Z ZV.JmE‘H. m, qm"’EZZZ Z_ Dulmml m ml mmg
E, = 7 =R 0(23
- EE&? EM(e E@+V@;9)E@+EEBT 0p.6)5 g

The &ove expressonslie a the basis of the dynamics equations for any roba structure.

4. THE MATRIX DYNAMICS EQUATIONS
Applyi ng the virtual work principle in dynamics[2], the foll owing are obtained:

057 0= TQ. +7 QY + 0
L7 7% HD g B 24

o Er’mgﬂuowom/x,a FhmOr {RR o] G

T 2 IIGRR ] GO
i Mﬁ TDA-iEr o QI =0Ji'l'|§ 3 +1 n+l|:; 2
G e QT i GEE R RRE T e

Abowe, Q! generaized driving forces, while Qg aswell QY, generalized forces from
every joint, dueto proper weights and manipulating payload respectively, are cdled.
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In keeping with [2], the @lumn matrix of the generalized inertiaforcesis the foll owing:

D n |:| L

. J O[R] [0] DE MjﬂvCj E

7 x; =0, = [ [; (26)
E;(O pn) $[R] ZO[R]D DJI Do+ ;%1 ] Hw

Considering Appell’s equatlons, the partlal derivatives of the a:cel eration energy, with
resped to generalized accderations, take the explicit and matrix form written below as:

20k -+ +Qic)=fas (B {IIRFK o7

%Ea:D n k T . n k k T ) ) s (27)
! E kzlgl-r [Akiml psk D“\kj]mj +k§i ZmélTr[Ak‘m psk D“kjm]qu €, E
c, [orb0)-b2,60)er 0w B0} 1) 7, B, .
% e mM(@)® +v(9;9

Thus, using the accderation energy, the matrix dynamics equations in the state
space and configuration respectively, can be expressed by means of the foll owing:

Qm(§= A%E{[M 6 E@+V(§9_) DA9+TB[;)Q(§)}+T[( 1)4m 1- Am EQSU( ) (29)
Qnle Am{{M 6)6 + Blo E[99]+C Ek ]}A9+TQ9()}+T( 1)Am 1'Am Qg #).(30)

1+3An

In the matrix dynamics expressons, above written, 7 =+1, the forces applied upon the
mechanical roba structure ae shown by Ay, ={-1,0;1}, while the motion from driving

jointsistaken into study by A, ={1;0}, yielding the generalized dynamics or static forces.

5. CONCLUSIONS

The &@owe dgorithm of the dynamic oontrol functions is included in
SMMECROb Smulator devoted to study concerning the assessment of the kinematics
performances, dynamics, and accuracy respectively for whatever mechanicd roba
structure regardlessof itstype and form. In this paper, onthe basis of new formulations,
the aceeration energy, and then the matrix dynamics equations have been establi shed.
They will have an important significancein the assessment of the dynamics accuracy.
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