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Abstract:  The algorithm of the dynamic control functions (IDM) achieves a complex study
regarding the behavior of any mechanical robot structure. Beside the dynamic control functions,
determined with various models, the dynamic functions of the operational variables can be also
analyzed. In the frame of this paper, on the basis of new formulations the expressions of the
acceleration energy, and then its mapping within of the matrix dynamics equations will be
analyzed. The above algorithm (IDM) is included in SimMEcROb Simulator devoted to study
concerning the assessment of the kinematics performances, dynamics, and accuracy respectively
for whatever mechanical robot structure, regardless of its type and geometrical form.
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1. INTRODUCTION
The robot control can be defined, in a simpli fied form, by means of the equation:

.  (t)X  (t) (t)Q ⇔⇔ θ      (1)
The robots perform some technological processes the high values for the kinematics and
dynamics accuracy performances are required in. That is why, the robot dynamics control
becomes a compulsory condition. The fundamental equations of the dynamics in the form
of symbolic show as below:

( ) ( )[ ] ( ) ( ) ( ) ( ){ }t;t;tf = tQ   ; tQf =t 1
mm

θθθθ





− ; ( ) ( )[ ]Ti
mm n1=i;tQ  = tQ → .      (2)

Above, )t(Qm  represents the column vector of the generalized driving forces from each
joint of robot, also called the matrix function of the dynamic control. First equation from
(2) refers to the direct dynamics model and the second to the inverse (IDM).

The algorithm of the dynamic control functions (IDM) is included in
SimMEcROb Simulator, [2] and [3]. It achieves a complex study regarding the
kinematics behavior and dynamics respectively to whatever mechanical robot structure.
Thus, beside the dynamic control functions, the dynamic functions of the operational
variables can be likewise analyzed. Within of this paper a matrix algorithm based on the
acceleration energy will be described in a new formulation. In the first time, the forward
kinematics formalism will be described. Its main matrix expressions will be called in the
acceleration energy, and then dynamics equations of the mechanical robot structure.
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2. THE FORWARD KINEMATICS FORMALISM
So as to define the direct kinematics modeling (DKM), in the Fig. 1 it has been

represented in a symbolical form
the mechanical robot structure
(MRS) with n d.o.f. The (n) kinetic
links are joined by driving joints of
fifth order symbolized as
{R-rotation; T-translation}, and
considered mechanically perfect.
In keeping with the forward
kinematics formalism [2] and [3]
the DKM equations can be written
in a symbolical form as follows:

( ) ( )[ ]tf =tX0)n( θ ( )θθ
��

;f=X0)n(

( ) ;;f= X 0)n( θθθ
�����

;     (3)

{ }θθθ





  ;  ; &




 X;X;X 0)n(0)n(0)n(





.

First set of vectors, above shown,
describes the motion from every driving joint, while the second characterizes the motion of
the end-effector in the Cartesian space. Their components are expressed by the symbols:

( ) ( ) ( ){ } ( ) ( ) ( ){ }[ ]Tiii n1=i ;tq  ;tq  ;tq =  t  ;t  ;t →








θθθ ;      (4)

( )
( )

( )

( )( )[ ]
{ } { }{ }











→=→==

→→⋅
=

















64j;;31j;1

61=j  ;n1=i  ;tqf

t

......

tp

=(t)X
ii

T
iij0n

∆δ

δ

ψ
;  

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] .v =  X

;  v   = X
TT

n
0nT

n
0n0n

TT
n

0nT
n

0n0n

ω

ω








  (5)

According to SimMEcROb [3], by applying the polynomial interpolating functions
of either 4-3-4th or 3rd order, the matrix of the kinematics control functions is established:

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]{ } 











→
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kkkCF
n

m1=k; q     q    q

  m1=k  ;         
= M

τττ

τθτθτθ
θ ���

����
;      (6)

where m1k →=  is the configuration number taken into study, while k1k τττ ≤≤−  is the
actual time variable between the two successively configurations of the robot structure.

In keeping with [3] and [4], the Jacobian matrix algorithm will be short
described so as to determine the DKM equations. The main steps are shown below.
• From DGM Algorithm, the following homogeneous transformation matrices are called:

[ ] ( )[ ] [ ] ( )[ ] [ ] ( )[ ]{ }n1i;n1+i=j ; tqT ; i1=j ; tqT ; tqT j
i
nj

0
ii

1i
i →=→→− ;

[ ] ( )[ ] n1=i;i1j=k ; 1i1=j; tqT k
j
i →→+−→ .      (7)

• The next loops:{ }j1k;i1j;n1i →=→=→=  are opened. In order to describe the
expressions typical of the above loops, the next notations have been implemented:

{ } { }{ }  T  =i  ; 0 ;R=i ; 1  = i∆ ; 1;  k  q   = q ii
i

iii ±=⋅⋅ ττ ;      (8)

Above, the operator i∆  shows the driving joint type from the MRS, and i
ik  the unit vector

of the driving axis expressed with respect to proper frame {i}.

Fig. 1
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• At beginning, the matrix-deriving operator is defined by means of the next expression:
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0000

1kk
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i
ii
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ii
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where { }×⋅ ii
ik ∆  the skew-symmetric matrix associated to unit vector i

ik  is called.

• The differential matrices of first and second order are defined with the expressions:
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• Every column from the Jacobian matrix and its time derivative of first order, expressed
with respect to frame either {0} or {n}, are determined with the next expressions:
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• The Jacobian matrix and its time derivative, in the two frames {0} and {n}, is written as:
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where ( ) ( ){ }θθ ΩJ;J 0
V

0  the linear and angular transfer sub-matrix have been called.

• Using the Jacobian matrix with its time derivative, above written, the DKM equations
with respect to frame {0} and {n}, are defined by means of the next matrix expressions:
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Remarks. The DKM equations (14), established on the basis of the Jacobian matrix
algorithm above described, will express the motion of the end-effector in the Cartesian
space. The same results will be likewise called in the next section devoted to establishment
of the acceleration energy for whatever mechanical robot structure taken into study.
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3. THE ACCELERATION ENERGY
It is known that, the dynamics equations to whatever mechanical system with

n d.o.f., as example mechanical robot structure (MRS), are defined by means of the
formalisms typical of the analytical mechanics [1] and [2]. But, the same equations can
be likewise expressed by extending of the dynamics study upon the acceleration energy.
In keeping with analytical mechanics, its defining expression into first form shows as:

dmvv
2

1
dmv

2

1
E j

jT
j

j2
ja ⋅⋅∫⋅=⋅∫⋅= ��� ;    

jCj
j

j
j

jC
j

j
j

jC
j

j
j rrvv ××+×+= ωωω��� .    (15)

Considering Fig. 2, the acceleration of the elementary mass dm , continue distributed in

the kinetic link (j) from (MRS), see Fig. 3, is symbolized by j
j v� , while { }j

j
j

j
jC

j ;;v ωω ��
represent the parameters typical to a general motion of the same link, supposed as rigid.

Performing the calculus in (15), the defining expression of the acceleration
energy takes a new general form written below as:
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Above { } { } { }{ }MotionRotation;1;MotionnalTranslatio;0;MotionGeneral;1M −=∆ ;

and { }{ } dmrrI
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They are known as either inertia tensors or matrices of the mechanical inertia moments.
Taking into study the symbols from Fig. 2 and Fig. 3, the same acceleration

energy will be also determined under form of a new matrix expression as follows:
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Fig. 2 Fig. 3



A& QT-R 2002 (THETA 13)
International Conference on Automation, Quali ty and Testing, Robotics

May 23 – 25, 2002, Cluj-Napoca, Romania

5 of 6

Mapping the mass integral on the whole link (i), the integral expression is written as:
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Performing the calculus in (19), it yields the next expression of the acceleration energy:
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In keeping with [3], the next notations, and then dynamics matrices are implemented:
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Consequently, the new matrix expression of the acceleration energy, finally, shows as:
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The above expressions lie at the basis of the dynamics equations for any robot structure.

4. THE MATRIX DYNAMICS EQUATIONS
Applying the virtual work principle in dynamics [2], the following are obtained:
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Above, i
mQ  generalized driving forces, while i

gQ  as well i
SUQ  generalized forces from

every joint, due to proper weights and manipulating payload respectively, are called.
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In keeping with [2], the column matrix of the generalized inertia forces is the following:

[ ] [ ]

( ) [ ] [ ] 















⋅×+⋅

⋅
⋅



















∑∑ ×−

∑
=

==

=

j
j*

j
j

j
j

j
j*

j
j

jC
j

j

n

ij

0
j

n

ij

0
jnjC

0

n

ij

0
j

*
iX

0

II

.....................................

vM

RRpr

0R

ωωω�

��
;    (26)

Considering Appell ’s equations, the partial derivatives of the acceleration energy, with
respect to generalized accelerations, take the explicit and matrix form written below as:

( ) ( ){ } [ ]{ }
[ ] [ ]



















∑ ∑ ∑ ∑ ∑ ⋅⋅⋅⋅+⋅⋅⋅

⋅



 ⋅⋅=+⋅+⋅−

=
∂
∂

= = = = =

n

ik

k

1j

n

ik

k

1j

k

1m
mj

T
kjmpsk

k
kij

T
kjpsk

k
ki

*
iX

0T

ii
i0

i
T

ni
i
fc

i
SU

i
g

i
m

i

a

qqAIATrqAIATr

kRp AQQQQ

q

E

������

�
∆ττ

;    (27)

( ) ( ) ( ) ( ){ } ( ) ( )
( ) ( )











+⋅

⋅=+⋅+⋅−
=

∂

∂

θθθθ

θθθθτθτθ

θ ����� ;VM

JQQQQE
*
X

0T0
fcSUgma

�
;    (28)

Thus, using the acceleration energy, the matrix dynamics equations in the state
space and configuration respectively, can be expressed by means of the following:

( ) ( ) ( )[ ] ( ){ } ( ) ( )θ
∆

∆τθτ∆θθθθ∆θ ∆
θ SU

m

mm
g

2
mm Q  

 3 +1

 -1
   1 Q + ;V  +    M     =Q ⋅⋅−⋅+⋅⋅⋅⋅

���
;    (29)

( ) ( ) ( ) [ ] ( ) [ ]{ } ( ){ } ( ) ( )θ
∆

∆τθτ∆θθθθθθθ∆θ ∆
θ SU

m

mm
g

22
mm Q 

 3 +1

 -1
  1Q  C B +   M Q −++⋅+⋅=

�����
.(30)

In the matrix dynamics expressions, above written, 1±=τ , the forces applied upon the
mechanical robot structure are shown by { }1;0;1m −=∆ , while the motion from driving
joints is taken into study by { }0;1=∆θ , yielding the generalized dynamics or static forces.

5. CONCLUSIONS
The above algorithm of the dynamic control functions is included in

SimMEcROb Simulator devoted to study concerning the assessment of the kinematics
performances, dynamics, and accuracy respectively for whatever mechanical robot
structure regardless of its type and form. In this paper, on the basis of new formulations,
the acceleration energy, and then the matrix dynamics equations have been established.
They will have an important significance in the assessment of the dynamics accuracy.
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