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Abstract. The paper presents an original method for topological determination of network function 
for linear, symmetrical and reciprocal multipols interconnected in networks with a great number of 
nodes and branches. The algorithm used has five stages: the initial description of each multipol, the 
description of the interconnected multipol topology, the interconnection vector generation, the 
reducing of blocks and networks obtained by their successive interconnection and finally the 
topological determination of network function for couples of ports of an interconnected multipol 
system. Thus, the original algorithm using interconnection associated vectors, presented in this 
paper, simplifies and orders the eliminating methods determination of the equivalent multipol.  
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1. INTRODUCTION 
The method proposed in this paper is a very efficient and original one permitting  not 

only a topological description of the multipol network and multipol parameters but also a 
simplified description of  the multipol interconnection and an ordered algorithm of access 
poles, an elimination algorithm of internal nodes, an evaluation algorithm of multipol 
interconnection included generation of a currently set of interconnection nodes and finally 
the determination of transfer function from a port α to a port β of a interconnected multipol 
system [1]. The application of the proposal method allows a direct topological determination 
of the network functions referring to the given access ports [2]. 
  

2. TOPOLOGICAL DESCRIPTION OF MULTIPOL ELEMENTS 
For topological description of multipol parameters, each linear and reciprocal  

element component of multipol is to be characterised using complex admittance or 
operational admittance,Y. Using equivalent edges that replace serial or parallel elements, 
are to be considered multipols without serial or parallel elements.  

For generalisation (having in view the generation of the complex polygon structure by 
the complete star-polygon transformation) we shall further take into consideration the 
complete polygon structure of the multipol. For each linear, symmetrical and reciprocal 
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multipol there will be a triangular tableau model to associate with a fictitious complete 
polygon circuit of identical vertex. 

The contained elements of this tableau will be the ordered admittance of the multipol 
edges and “zeros” for the “non-existent” edges of characteristic structure.  A circuit complete 

pentagon ( N = 5) is shown in fig.1. 
 

 
 2 3 4 5 
1 Y12 Y13 Y14 Y15 
2  Y23 Y24 Y25 
3   Y34 Y35 
4    Y45 

 
                                         Fig.2. 

  Admittance associated    triangular tableau                   
 

 
 

The edges parameters are disposed in the 
associated triangular tableau (fig.2) which has N-1 lines ( 1, 2,..., N-1) and N-1 columns ( 
2, 3,..., N). The triangular tableau is associated with parameter vector V which has N(N-
1)/2 elements.     
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Network graph with complete 
pentagon 

 
3. THE ALGORITHM METHOD FOR  MULTIPOLS REDUCTION  

 The vertices of the interconnected multipol network, derived from the overlapping of at 
least two vertices pertaining to different multipols, are refereed to as network link vertices. 
The types of vertices given below define the vertices of the interconnected multipol network. 
The primary vertices (input vertices) of an interconnected multipol network are, by definition, 
network vertices that can be either access vertices or link vertices. The secondary vertices ( 
internal vertices) of the interconnected multipol network are, by definition, multipol vertices 
that are not primary vertices. Each network multipol is associated to a multipol primary vertex 
vector which are, by definition, multipol vertices and at the same time network primary 
vertices. We consider a succession of multipols 1, 2,..., NB where each new input multipols 
marks an interconnected multipol. Each block may be reduced (as vertices number) by 
eliminating the block vertices which are secondary blocks in the interconnected block 
network. This reduction is achieved by successive star-polygon complete transfiguration 
which eliminates one of the secondary vertices at a time. Each common BCK  block where k = 
2, 3, …, NB -1 gets simplified by the replacement of the derivation elements pairs with an 
equivalent element and by successive star-polygon transfiguration which remove the  block 
vertices to be eliminated from the each common block are the overlapped primary vertices that 
are not external access vertices and to which no primary vertices of the following blocks 
k+1, k+2, …k+ NB -1 are to be connected. This elimination can be done by the same star-
polygon complete transfiguration which eliminates the neutral point of the star. Thus, the 
simplification of the BC, common block can be achieved through successive star- complete 
polygon transfiguration which reduces the block vertices that are to be eliminated according 
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to vertices numbering.  After each transfiguration, the derivation edges are reduced getting 
replaced by an equivalent edge. For the star-complete polygon transfiguration applied to 
one vertex of an electric linear reciprocal circuit, represented by the associated triangular 
tableau one might find an extremely efficient algorithm suggested here bellow. 
 We shall consider, as an example NA external access vertices which can be reduced 
to a complete polygon network having NA vertices. For the elimination of the 
supplementary access vertices reducing the greatest order number will be selected. For 
instance, having NA= 3  external access vertices ( 1,5 input and 4,5 output, where the 5 
node can be electroenergetical system null [4] or common base in electronic circuits )  the 
number order will be : N -3, N -2, N -1, N which can be seen in fig. 3,a (for N = 5).  
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Fig.3- Network graph with complete pentagon and the access vertices 1, 4, 5: elimination of 
the stars with the centre in the vertex 2 ( a-b) and the vertex 3(c-d). Tripol equivalent network 
(e).      

 
The equivalent network can be obtained through N-NA complete star polygon 

successive transfiguration. The vertices 1, 2,…, N-NA being successively eliminated. The 
elimination of vertex 2 (from the N vertices polygon) for obtaining the edge for the equivalent 
polygon in relation with the vertices 2, 3,.., N, requires: 

a) The edge admittance  calculation of the complete polygon, equivalent with the star 
network having the centre in the vertex 2 and the vertices 2, 3,…, N; 

b) Replacing the edge pairs, in parallel connection with each vertex pair, with an 
equivalent edge. The successive vertex elimination, from the vertex 2 to the vertex N- NA 
is made by recurrence with the relation: 

∑
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where the upper index corresponds to the eliminated vertex and the index e  is used for the 
polygon equivalent with the star network, associated with the eliminated vertices. For 
generality, Ykj

(0) = Ykj corresponds to the admittance from the initial complete polygon. 
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 For the considered network having the centre in vertex 2 (fig.3, b and 3, c) and 
respectively the star network having the centre vertex 3 (fig. 3, d and 3, e). The complete 
equivalent polygon with 3 vertex access (1, 5 and 4, 5) is a classical Π- scheme, and is 
represented in fig.3, e. The admittance triangular tableau corresponding of this network is 
represented in figure 4.       

Fig.4- Admittance triangular tableau for the network having the 
graph from figure 3, e.  
 
For the considered order the elimination is done efficiently in the 
order 1, 2,.., NVI ( internal vertices number ) or (1, 2,.., N-NA ). 
After the first i-1 elimination have been done, the triangle resulting 
from the elimination of the first i-1rows, has to be processed. 

Consequently, the following algorithm can be applied with the stages 1= 1, 2,..., NVI. For the 
stages corresponding to vertex i: 

   4  5 

1 Y14
(2) Y15

(2) 
4 - Y45

(2) 
                       
                        

 1. Calculate the sum Si of the admittance situated on the row i and liked to the vertex 
N: 

S Yi i
i

k i

N

= −

= +
∑ ,

( )1

1
k                                                                                                    (2) 

where Yi,k
(i-1)  is the admittance of the edge which links the vertex i to vertex h ≥ i after the 

first i-1 internal vertices have been eliminated; 

 2. Calculate the rapport: α  ;  k = i+1, i+2, ...N-1                                        (3) i k
i k
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i
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which values are memorised into the vector VM. 
 3. For each row with j < i the elements of the line are replaced by: 

Y Y Yj k
i

j k
i

i j
i

i k,
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,
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,
( )

,= +− −1 1 α                                                                                     (4) 
Thus, this triangular model simplifies and reduces the elimination of the vertex 

permitting the gradual reducing of calculation area. By   interconnecting the first “k” 
blocks, one obtains the common multipol BCk containing: 

• reducible nodes and 
• irreducible nodes ( external access nodes and interconnection nodes with 
the next  k+1, k+2,..., NE  nodes).  
The successive transfiguration algorithm presented here bellows is used for 

reducing of reducible nodes. Each interconnection of the BCK  block with the preceding 
BCK-1 block involves an overlapping of nodes leading to a shunt connection of some circuit 
elements. As consequence, the block system reduction involves the reduction of the shunt 
elements too. This represents a necessary condition for proposed successive transfiguration 
algorithm application. 
               

5. EXAMPLE 
            Let’s consider a complete and symmetrical polygon central circuit with n vertices 
and n = NB complete and symmetrical periphericals polygon (n blocks) with m vertices 
each connected to two coupling vertices to every of the external edge of the central 
polygon. In figure 5 we can see an example in which n = 6 and m = 5. Each edge has 
admittance Y=2 S.               
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Fig. 5- The interconnected multipol having a central complete hexagon and 6 complete 
periphericals complete pentagon connected to 2 coupling vertices with central polygon.                
 

The system of interconnected multipol has 24 vertices and 75 edges. The system has 
NA = 4 external access vertices: the input port α with 1, 2 input vertices, and the output 
port β with 9, 16 output vertices. Each (NB = 6) peripheral block may be reduced (as 
vertices number) by eliminating the block vertices which are secondary blocks in the 
interconnected block network. For example, the reduction of the peripheral block which has 
1, 2, 3, 3, 4 and 5 vertices, fig.6, a, is successive done only through star-complete polygon 
transfiguration keeping 1 and 2 coupling and access vertices. The elimination of the 
vertices 4, 5, shown in figure 6, b and c, and on vertices number 3 - which is practically 
includes in the series of the coupling vertices 1, 2- is described in figure 6, d. Thus we 
obtain the equivalent cuadripol which has 1, 2, 9 and 16 vertices.           

The appeal of the computation procedure of the network functions from the port α 
(1, 2) to the port β (9, 16), relations (10) and (12), offers the results: Yβα = Y(9, 16), (1, 2) = 0, 
95 S.  

The TURBOPASCAL programmes established on the basis of this  
method for the microcomputer PENTIUM IV computes this complete circuit in 45’’, [5]. 
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Fig.6-The reduced of one (a) of the periphricals complete pentagon by eliminating 
the secondary vertices: 4 (b), 3 (d).   
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6. CONCLUSIONS 
 Equivalent network determination for diverse electroenergetic and electronic 
multipol systems represents an extremely important problem in the context of trying an 
adequate iterative method permitting efficient and fast calculation. 

The proposed method is an original algorithm which eliminates the sign factor 
problem for the network function calculation, simplifies and orders the eliminating methods 
determination of the equivalent multipol. 

The method is highly useful and efficient for great complexity electrical network 
analysis.  
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