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The task of planning and designing is often complex because there is often no model or
detailed understanding of how changes in the parameters affects product properties. Traditional
approaches include statistical methods and experimentation. Both methods are expensive. In
addition, in most cases the conventional, linear statistical tools do not work at all.

A significant opportunity exists to improve operations and resulting profitability by
streamlining the design task. Artificial neural network approximation addresses this opportunity
which is most useful in an environment where theoretical descriptions are difficult to obtain, but
partial knowledge about the process is known and input-output data are available. The obtained
relation (the trained artificial neural network) is then used as an interpolating function to estimate
product performance when given specific parameters (direct modeling). The trained artificial neural
network is used as the object function of a Nelder-Mead simplex to optimize parameters to
accomplish desired product characteristics (inverse modeling or optimization).
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1. INTRODUCTION
The human brain is constituted by special, interconnected cells called neurons.

Biological neurons transmit electrochemical signals over neural pathways. Each neuron
receives signals from other neurons through special junctions called synapses. Some input
tend to excite the neuron, others tend to inhibit it. When the cumulative effect of the inputs
exceeds a threshold, the activated neuron sends a signal toward the other neurons.

The artificial neuron models this simple behavior: each artificial neuron receives a
set of inputs. These are weighted and their sum determines the activation level. The artificial
neural network contains a large number of simple neuronlike processing elements and a
large number of weighted connections between elements. Each neuron is excited by a set of
weighted inputs. This excitation determines the activation level of that neuron (its output).
Their response constitutes the excitation of the neurons from the next layer. The activation
level of the neurons from the last layer (of the output units) determines the response of the
neural network to the given excitation.

The process trough the values of the weighting coefficients are obtained is the
learning or training phase: starting from some arbitrary or random weight setting the neural
network is trained to adapt itself to the characteristics of the training instances. In each
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training cycle the obtained response is compared with the desired one. The weighting
coefficients are modified to minimize the difference between the obtained and desired
output.

In our test programs we used total connected feedforward neural networks with one
hidden layer. Biasing was introduced to reduce the effect of the overfitting.

2. THE NELDER-MEAD DOWNHILL SIMPLEX OPTIMIZATION METHOD
The multidimensional optimization is the problem of finding the minimum of a

function of more than one independent variable. The Nelder - Mead method was adopted in
our studies because it requires only function evaluation (that is performed using the trained
artificial neural network), not derivatives (those are unknown).

A simplex is the geometrical figure, in n dimensions consisting of n + 1 vertices
(points) and all their interconnecting entities (segments, faces etc.). A 3D simplex is a
tetrahedron (Fig. 1).

In one-dimensional minimization it is possible to bracket a minimum, so that the
success of a subsequent isolation is guaranteed. In a multidimensional space there is no
analogous procedure. So given the algorithm starts with a guess that is an n dimensional
simplex.

This guess is the initial simplex defined in the middle of the field of the input
variables. As it was shown, the initial simplex is build up from n + 1 points. If P0 is
considered as the initial starting point, the other n points can be taken as

i0i e⋅λ+= PP , (1)
where ei are unit vectors (of the nD space) and λ is a constant.

In our case the number of the dimensions n is the number of input variables and the
vertices of the simplex will be n + 1 input data sets of the artificial neural network.

The algorithm is then supposed to make its own way downhill through the n-
dimensional topography, until it encounters a minimum (that can be a local minimum) of the
studied function.

This function in our case is the relation modeled by the trained artificial neural
network. If we have a single output property the value of the function is simply the response
of the trained network (the estimated output property). When we have more output
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Fig. 1. The 3D simplex
(the initial simplex)
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properties, the value of the function to be minimized is obtained as the sum of the estimated
outputs.

The downhill simplex method now takes a series of steps, most of them just moving
the point of the simplex where the function is largest (this is the highest point) trough the
opposite face of the simplex to a lower point. These steps are called reflections and they are
constructed to conserve the volume of the simplex.

When it can do so, the method expands the simplex in one or another direction to
take larger steps. When it reaches a valley floor, the method contracts itself in the transverse
direction and tries to ooze down the valley.

In the situation when the simplex is trying to pass trough a narrow place, it contracts
itself in all directions around of its lowest point.

The terminating criteria is the comparison of the distance of the moving is smaller
than some tolerance, or alternatively, of the decrease of the function value in the terminating
step. For a certain result is a good idea to restart the minimization routine at a point where a
minimum was found.

3. CONSTRAINED OPTIMIZATION
The role of the optimization is to generate a set of input properties in response to the

specified set of output properties.
Their range can be constrained to any subinterval but they ought to be covered by the

original data (used in training). Constraining the definition range of the input properties is
rather simple; e.g. if the chosen evaluation point has a coordinate over of the valid range its
value is set to the upper limit of this interval.

Constraining the range of the output properties can be resolved using penalty factors:
if one estimated output property is out of the constrained range it is set to a high value (the
algorithm searches the smallest possible value over this range).

The rank (importance) of the output properties can be set according priority values:
higher values mean higher priorities. These priority values act as weighting coefficients and
the values of function to be optimized will be the weighted sum of the estimated output
properties.

The algorithm presented till now searches the minimum of the studied function
(relation), but the optimum does not mean always this minimum. So given, there were
introduced three types of optimization:

• 1. tent optimization - the value of this output property is expected as close to the mean
value of the limits of the definition interval (is its middle) as possible. The quantity to be
minimized is the absolute value of the difference of the estimated output and of the mean
value of the constrained interval.

• 2. uphill optimization - the value of this output property is expected as close to the upper
value of property domain as possible. The quantity to be minimized is the absolute value
of the difference of the estimated output and of the upper limit of the constrained
interval.

• 3. downhill optimization - the value of this output property is expected to be as close to
the lower value of property domain as possible. The quantity to be minimized is the
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absolute value of the difference of the estimated output and of the lower limit of the
constrained interval.

Other available constraints are the prescription of the ratio of the input properties: in
other words, between the constrained coordinates of the vertices of the simplex must exist a
constant proportionality.

The sum of the input properties also can be constrained. If the taken vertex has the
sum of the coordinates over of the allowed range its coordinates are reduced using the same
scale factor to get their sum as the upper limit of the definition interval.

4. VALIDATION
To have the possibility to control how the used algorithm works we considered a

large number of 'measured' data points (sets) obtained using a known functions, as:

z = cos(x) + sin(y) + y / 2 (2)
x= 2 π a; y = π a; a ∈ [0, 1].

It is easily observed that this is a transcendent function that is the equation of a
surface represented in the next picture (Fig. 2). It is known that modeling of such functions
using polynomials is rather difficult.

The 'measured' (x, y, z) sets were obtained as values of the function at uniformly
distributed random (x, y) points. The previous picture (Fig. 3) is the image of the z = f(x, y)
surface as it is 'seen' by the neural network. This plot was obtained using estimated z values
for x ∈ [0, 6.5] and y ∈ [0, 3.5], varying them by 0.5.

Comparing these two figures we can observe a good matching, excepting the
boundaries of the represented domain (they were not covered by the 300 sample points).

The obtained neural network was used in inverse modeling. The aim of the
optimization was to find the values of the input properties those gives the desired output
properties, respecting some conditions (Fig. 4):

The carried-out results were obtained as: x = 1.333, y = 0.667, z = 1.164.

Fig. 2. The exact shape of the studied function Fig. 3. The image of the studied function
seen by the trained neural network
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Let verify if the initial conditions were satisfied:
- making some estimations near of these values (of course: respecting the initial conditions)
we will obtain values of z higher than 1.164;
- x : y = 1.333 : 0.667 = 1 : 2; - the prescribed ratio is obtained
- x + y = 1.333 + 0.667 = 2.0 - inside of the constrained interval of sums.

5. AN APPLICATION
We have studied the mechanical properties of the jumping joints obtained in the

same conditions using eight different welding rod steels and the obtained mean values are
summarized in the next table:

C % 0.08 0.09 0.08 0.08 0.08 ....
Mn % 0.55 0.6 0.6 0.65 0.5
Si % 0.2 0.25 0.4 0.35 0.3Components

S & P (over 0.04 %) no no yes yes yes
Tensile strength l1 N/mm2 510 535 525 525 535
Ductility limit l2 N/mm2 430 450 465 465 465
Breaking strain d % 26 27 28 28 26

Each steel is an alloy of the following elements: Fe (iron), C (carbon), Mn
(manganese) and Si (silicon), some of them having S (sulfur) and P (phosphorus) impurities
in significant quantities. The "no" and "yes" logical entries were replaced by "0" and "1"
numerical ones.

The relation between the composition and the mechanical properties of these steels
was given by a neural network with the relative errors of 0.81% (tensile strength), 1.51%
(ductility limit) and 2.99% (breaking strain).

Let suppose that we have to determine the composition of steel unpurified with P and
S that assures ductile jumping joints with the possible highest mechanical properties. The
ratio of the components must be Mn : Si = 2.5 : 1. The sum of the alloying elements must be
under 1.2%.

Fig. 4. Interpretation of the constraints:
- the sum of x and y must be (x + y) ∈ [1,2]
(this domain is limited by the two parallels)
- the ratio between x and y must be x / y = 2
(this constrain is shown by the light diagonal line)
- downhill optimization for z
(the lowest possible value of z is searched)
Darker colours mean lower values of z.
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To resolve this problem we have to make an optimization (inverse modeling) in the
next conditions:
- constrain the "S & P" property on the [1, 1] interval (it is forced to 1);
- set the ratio value 2.5 for Mn and 1.0 for Si;
- set the sum of the C, Mn and Si components to [0.78, 1.2];
- set the kind of optimization to 'uphill' for l1 and l2 (possible highest mechanical
properties);
- set the kind of optimization to 'uphill' for d (ductile steel).

The obtained properties will be:
- steel with components C = 0.08%, Mn = 0.65 %, Si = 0.26 %, unpurified with S and P,
with d (Breaking strain) = 26.9 %, l1 (Tensile strength) =533 N/mm2, l2 (Ductility limit) =
458 N/mm2.

6. CONCLUSION
Often there is no model or detailed understanding of how changes in formulation and

processing conditions affect product properties. Many times the designing engineer is forced
to rely on experience, insight and trial-and-error to find a formula that is sufficient, if not
optimal.

The presented algorithm minimizes the need for analysis and experimentation
typically required for new product design. It builds upon conventional techniques by
integrating neural networks and optimization methods. It is most useful in an environment
where theoretical descriptions are difficult to obtain, but partial knowledge about the process
is known and input-output data are available.
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