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ABSTRACT. Hybrid systems have received a lot of attention in the past decade and a number 
of different models have been proposed in order to establish mathematical framework that is 
able to handle both continuous and discrete aspects. This paper is focused on two classes of 
model: hybrid automata and hybrid control systems with a separable cost structure, allowing the 
decomposition into a lower level part, with time-driven dynamics interacting with a higher-level 
component, with event-driven dynamics. A time-optimal control problem can be formulated 
within a hybrid automata model. The second class of hybrid models ensures the performance 
optimization of both hierarchical components, thus resulting an optimal switching control 
policy. Specific aspects of both approaches are comparatively emphasized. 
 
KEYWORDS: discrete event system (DES), hybrid systems, hybrid automaton, hybrid 
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1. INTRODUCTION  

The term “hybrid” is used to characterize systems that combine time-drive and event-
driven dynamics. The former are represented by differential (or difference) equations, 
while the latter may be described through various frameworks used for discrete event 
systems (DES) [2], like an automaton or an input-output transition system with a finite 
number of states [1], [4]. Broadly speaking, two categories of modeling frameworks 
have been proposed to study hybrid systems: those that extend event-driven models to 
include time-driven dynamics and those that extend the traditional time-driven models 
to include event-driven dynamics [5]. Thus, hybrid systems are systems that involve 
both continuous and discrete variables and their evolution is given by state equations 
that generally depend on all the variables. Hybrid systems have received a lot of 
attention in the past decade and a number of different models have been proposed in 
order to establish mathematical framework that is able to handle both continuous and 
discrete aspects.  

This contribution is focused on two classes of models: hybrid automata, [1], [4] and 
hybrid control systems with a separable cost structure, allowing the decomposition into 
a lower level part, with time-driven dynamics interacting with a higher-level 
component, with event-driven dynamics [3], [5]. A hybrid automaton represents 
essentially a set of continuous dynamic systems, together with a switching policy 
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among these continuous dynamics. A time-optimal control problem can be formulated 
within a hybrid automata model. The second class of hybrid models ensures the 
performance optimization of both hierarchical components, thus resulting an optimal 
switching control policy; this framework was successfully applied to methalurgical 
manufacturing systems, among others [3].  

Section 2 presents a brief overview of the hybrid automata framework [1], [4] and 
introduces the time optimal control problem. Section 3 discusses the optimal control 
problem for a hybrid system with separabable cost structure and briefly presents the 
related hierarchical decomposition, thus resulting a hierarchical two-levels hybrid 
controller [3], [5]. The plant coupled to this controller thus becomes a classic 
continuous system with an optimal switching control policy. At this point, a possible 
conversion to hybrid automata models may lead to an interesting comparison between 
the two optimal control problems. 

 
 
2. HYBRID AUTOMATA – A BRIEF OVERVIEW AND RELATED PROBLEMS  
 
2.1 Review on hybrid automata 

The framework used here is based on the hybrid automata first introduced in [1]. A 
hybrid system is modeled as a finite automaton that is equipped with a set of variables. 
In each location of the automaton, the values of the variables change continuously with 
time, according to a specific evolution law. Each transition of the automaton is guarded 
by an event and its execution modifies the values of the variables, according to the 
associated assignment. Each location is also labeled with an invariant condition that 
must hold as long as the system resides at a location.  

A hybrid automaton H is a seven-tuple ),,,,,,( AssEvAInvActLocVarH =  where: 
(1) Var is the finite number of real-valued variables 1x , 2x , …, nx . The continuous 
state of H is nTnxxxx R∈= ][ 21  and it is also the variable state of H. (2) Loc is a 
finite set of vertices called locations; (3) Act is a function that assigns to each location 

Locl ∈  a function actl describing the evolution of variables according with time. In 
general, actl can be defined as an evolution law: ),(: uxfxactl = . (4) A is a finite set 
of arcs called transitions. Each transition )',( lla =  identifies a source location 

Locl ∈  and a target location Locl ∈' . (5) Ev is a function that assigns to each 
transition )',( lla =  a predicate Eva, called event. The execution of the transition 

)',( lla =  is conditioned by the occurrence of the event Eva. (6) Ass is a function that 
assigns to each transition )',( lla =  a relation Assa called assignment. It is used for 
updating the variable state and generally defined as: Assa: x:=g(x).  

At any instant, the state of a hybrid system is given by a location Locl ∈  and a 
continuous (or variable) state nx R∈ , so the system state is characterized by the pair 

),( xls = . It can change in two ways: (i) by a time delay measured by a clock, that 
changes only the variable state according to the evolution law associated with current 
location; such a delay can take place as long as the variable state satisfies the location 
invariant; (ii) by the instantaneous execution of a transition that changes both the 
location and current variable state according to the transition assignment. The execution 
of the transition is conditioned by the occurrence of the associated event.  
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If in a location l 1: =xactl  and for all transitions having the source in l, )',( lla =  
with Locl ∈' , the assignment is defined by: Assa: x:=g(x)∈{0, x}, then x is a clock. 
Thus: (1) the value of the clock increases uniformly with time, and (2) a discrete 
transition either resets a clock to 0 or leaves it unchanged. If in the above definition 

kxactl =: , with k∈Z an integer nonzero constant, and for all transitions having the 
source in l, )',( lla =  with Locl ∈' , the assignment is defined by: Assa: x:=g(x)∈{0, 
x}, then x is a skewed clock. 

 
2.2 Specific problems  
We shall first briefly present an example, introduced in [4]. 

l1 : closed (75%)
l2 : open (75%)

x2

S

8

5

x1

(a) 
 

11 BxAx +=  
l1 l2 

22 BxAx +=  
x1=3 / x1:=0 

a1 

x2=5 

a2 

x(0) 

(b) 

Figure 1. Hybrid system representing the controlled level dynamics in a water tank (a); 
the corresponding hybrid automaton (b). 

Consider the hybrid automaton in fig. 1(b). The level x2 in the water tank in Figure 
1(a) is controlled by an automaton that measures it and opens or closes the valve S. The 
state variable x1 represents the clock of the controller ( 01 =x ). When the controller 
closes the valve (location l1 in the hybrid automaton), then the level rises with the speed 

15.55.0 22 +−= xx . When the valve is open (location l2 in Figure 1(b)), then the level 
goes down with the speed 14.0 22 +−= xx . In each location of the hybrid automaton, 
the evolution laws are represented by linear state equations, with the matrices: 









−

=
5.00

00
1A , 








=

15.5
1

1B ; 







−

=
4.00

00
2A , 








=

1
1

2B . (1) 

The hybrid system has the following evolution. Suppose that Tx ]533.1[)0( =  and the 
valve S is closed (location l1). When the clock x1 reaches the value 3, then the controller 
opens the valve S (the transition a1 is fired) and resets the clock x1 to zero. In the 
location l2, when the water level x1 reaches the value 5, then the controller closes the 
valve S (transition a2 is fired) and the hybrid automaton returns to location l1.  

The hybrid automata approach is basically dedicated to systems analysis, and a 
relevant problem is the analysis of the reachability of a given global state. Let s  and 's  
be two global states of H. The state 's  is reachable from the state s, 'ss , if there is a 
run of H (i.e., informally, an admissible sequence of global states of H) that starts in s 
and ends in 's .  

Additionally, the following optimal control problem may be formulated: given a 
linear hybrid automaton with linear evolutions in each location, 
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uBxAx jj += , Locl j ∈∀ , (2) 

together with an initial state ),( 0
0

0 xls =  and a desired (reachable) final state 
),( F

F
F xls = , find the control )(⋅u  that minimizes the functional 

∑
∀

δ=
i

iJ , (3) 

where 0>δ i  represents the time interval for which the hybrid systems resides within 
location Locli ∈ , in its discrete evolution.  
 
 

3. OPTIMAL CONTROL OF HYBRID SYSTYEMS WITH HIERARCHICAL 
DECOMPOSITION  

 
3.1 The problem formulation 
In the hybrid systems framework introduced in [3] and [5], the state of the system 

consists of temporal and physical components. The temporal components keep track of 
the time information for systems events that may cause switches in the operating mode 
of the system. Let ,2,1=i  index these events. The ith physical state of the system is 
denoted by )(tzi , with the dynamics  

),,( tuxgx iiii = , 0
1 )( iii xex =− , (4) 

where )(tui  is the control applied over an interval ),[ 1 ii ee −  defined by two event 
occurrences at times 1−ie  and ie . In the case of a single event-driven process in the 
system, the event-driven dynamics characterizing the temporal state ie  are given by  

),(1 iiiii uxee γ+= − , (5) 

for ,2,1=i , where ),( iii uxγ  represents the amount of time between switches, which 
generally depends on the physical state and control. 

The optimal control problem considered is 

∑
=

− ψ+φ=
N

i
iiiiiii eeeuxJ

1
1 )](),,,([min

u
. (6) 

Here, ),,,( 1−φ iiiii eeux  is the cost of operating the system with control )(tui  resulting 
with the physical state )(txi  over interval ),[ 1 ii ee − , and )( ii eψ  is the cost associated 
with the occurrence at time ie  of the ith event. Assumming that 

),,(),,,( 1 iiiiiiiii uxeeux δφ=φ − , with 01 ≥−=δ −iii ee , ,2,1=i , the optimal 
control problem can be written  

∑
=

ψ+δφ=
N

i
iiiiii euxJ

1
)](),,([min

u
. (7) 
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subject to (4) and (5), where },,{ 1 Nuu=u  and N is the number of time-intervals 
involved in the operation of the system.   
 

3.2 Hierarchical decomposition 

Since )(tui , ),[ 1 ii eet −∈  is a function of )(txi  and iδ , (7) can be rewritten as  

∑
=

ψ+δφ
N

i
iiiiiisxxu

eux
i

F
iii

F
1 ),,(,,

)](),,(min[min
00 δxx

. (8) 

Further, it can be imposed a decomposition into a collection of inner minimization 
problems 

),,(min),,( 0
iiiiui

F
iii uxxx

i

δφ≡δθ , (9) 

subject to (4) for all ,2,1=i , with the (time-varying) solutions, respectively, 

),,(minarg),,( 0*
iiiiui

F
iii uxxxu

i

δφ≡δ , (10) 

and the outer minimization problem 

∑
=

ψ+δθ
N

i
iii

F
iii exx

F
1

0
,,

)](),,([min
0 δxx

, (11) 

subject to (5). Once the optimal time events determined from (11), (10) is used to 
determine the N optimal controls in the operation of the system. The hybrid controller 
for coordinating the two problems has the structure depicted in Figure 2. 

 ei = ei−1 + γi (⋅) 

Higher level controller 

δδδδ* 

θθθθ* δδδδ* 

Lower level controller 

u* 

),( iiii uxgx =

γγγγ, ψψψψ 

g, φφφφ 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2. Hybrid controller operation. 

Consider now the following example. The linear and decoupled continuous dynamics 
is given by 11 ux = , 001 )( xex = , 222 uxx +α= , 112 )( xex = , where the event-driven 
dynamics have the simple form: ),( 11101 uxee δ+= , ),( 22212 uxee δ+= . The cost to 
minimize is 

∑
=

ψ+δφ=
2

1
22 )()],,([

i
iiii euxJ , (12) 

where  
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∫
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F , 2
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(13) 

For 021 =δ=δ , it results 01 xx F = , FF xx 12 =  respectively. For a numerical example, 
setting 21 =r , 102 =r , 10=h , 10=dx , 00 =x , 1=α  and 10=β , the following 
solution of the optimization problem is obtained: it is optimal to start operating in the 
first mode with 72.5)(1 =tu  and switch to the second mode at time 4.01 =e , when 

29.21 =Fx . The system operates in the second mode with control tetu −= 66.1)(2 , until 
time 64.12 =e , when 67.92 =Fx .  
 
 

4 CONCLUSIONS 

Two optimization problems have been briefly presented, for two distinct classes of 
hybrid systems. The first one, attached to linear hybrid automata with linear continuous 
dynamics, is subject to future research. The second one, defined within a dynamic 
optimization problem with separable cost structure, allows the design of an optimal 
hybrid controller (in fact, a variable structure system), which defines an optimal 
switching control policy. It must be emphasized that hybrid automata generally model 
closed loop systems, i.e. plants coupled to their switching control policy, as presented in 
the example (see Figure 1). Starting from this remark, it's interesting to investigate a 
conversion method from the second class of hybrid systems to hybrid automata, in order 
to study the time-optimal control problem (3). 
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