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ABSTRACT    
 
 An algorithm, which uses on-line simulation and rule-based control, is proposed. The 
algorithm is a Model Based Predictive Control (MBPC) type. The basic idea is the on-line 
simulation of the future behaviour of control system, by using a few control sequences. Then 
the simulations are used to obtain the ‘optimal’ control signal. 
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 1. INTRODUCTION. 
 

Model Based Predictive Control (MBPC) designates a very ample range of 
control methods, which make an explicit use of a model of the process to obtain the 
control signal by minimizing an objective function. The ideas appearing in greater or 
lesser degree in all the predictive control family are: 

-explicit use of a model to predict the process output in the future; 
-on line optimization of a cost objective function over a future horizon; 
-receding strategy, so that at each instant, the horizon is displaced towards the 

future, which involves the application of the first control signal of the sequence 
calculated at each step. 

Performance of MBPC could become unacceptable due to a very inaccurate 
model, thus requiring a more accurate model. This task is an instance of closed-loop 
identification and adaptive control. The difficulty of closed-loop identification is that 
the input of process to be identified is not directly selected by the designer but 
ultimately by the feedback controller. Usually, the cost function is defined by using the 
output prediction error relative to the system setpoint and the weighted control signal, 
which can lead to a quadratic function as follows: 
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where y[.] is the predicted values of output signal, yr[.] is the future set-point, u[.] is the 
future control signal, N1, N2 are the minimum and maximum predicted horizon, Nu is 
the command horizon and ρ(j) is a control-weighting sequence. 

In order to obtain the future values of command, it is necessary to minimize 
function J from relation (1). To do this, using the model of the process, there are 
calculated the values of predicted outputs as a function of past values of inputs and 
outputs and of future control signals. Then, using the minimization of the cost function, 

Page 1 of 6 



A&QT-R 2002 (THETA 13) 
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics 

May 23 – 25, 2002, Cluj-Napoca, Romania 
 

are obtained the optimal values of control signals. An analytical solution can be 
obtained for the quadratic criterion if the model is linear and there are not constraints, 
otherwise an iterative method of optimization should be used. But obtaining the solution 
is not easy because are more independent variables. In order to reduce this degree of 
freedom, a certain structure may be imposed on the control law. There are some 
‘classical’ methods; for example see [1].  

The main goal of this paper is to show another way to obtain the value of u(t). 
Let’s consider that it is possibly to compute (for every sample period): 

- the predictions of system output over a finite horizon (N) 
- the cost of the objective function (1)  

for each possible sequence (for simplicity, here Nu=N): 
u(.)={u(t),u(t+1), ... ,u(t+N)}                                                     (2) 

and then to choose the first element of the optimal control sequence. For a first look, the 
advantages of the proposed algorithm include the following: 
 -the minimum of objective function is global; 
 -it is not necessary to invert a matrix, so potential difficulties are avoided; 
 -it can be applied to nonlinear processes if a nonlinear model is available; 
 -the constraints (linear or nonlinear) can easily be implemented. 

The drawback of this scheme is a very long computational time, because there 
are possibly a lot of sequences. If u(t) is applied to the process using a “p” bits 
numerical-analog converter (DAC), the number of sequences is 2 p*N  [2]. Therefore, the 
number of sequences must be reduced. In figure 1, is presented a scheme of control that 
used “j” sequences. 

 
Fig.1. Adaptive control using on-line simulation. 

  
2. CONTROL ALGORITHM  

 
 In this paper, will be tackled only the case when setpoint is constant for a long 
time. The setpoint is changed arbitrary. Using the model of process, it is possibly to 
compute the predicted output y(t+i) i=1..N. The expression of y(t+i) contains two terms: 
one (g(.)), which depends on old values of command and output signals g(.) and  one, 
which depends on future values of command signal. 
Therefore: 

y(t+i)=g(t+i)              for  i=1..d                                                         (3) 
y(t+i)=g(t+i)+fi-d-1(i)u(t+i-d-1)+fi-d-2(i)u(t+i-d-2)+...f0(i)u(t)   for i > d  (4) 

where fj, j=0..N-k-1 can be computed iteratively using the model of process. 
 In real case, it is necessary to consider that: 

   umin ≤ u(t) ≤umax                                                                (5) 
 where  umin and umax are the minimum and the maximum of command signal. 
 Let’s consider the next four command sequences and suitable output predicted 
sequences: 
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Case 1:        u1(t)  = {umin, umin,.., umin }                  (6) 
y1(t+i)= gi+siumin +f0umin               (7) 

where   si=fi-d-1+fi-d-2+..+f1                 (8) 
Case 2:          u2(t) = {umax, umin,.., umin }                  (9) 

                                      y2(t+i)= gi+siumin +f0umax                     (10)  
Case 3:        u3(t) = {umin, umax,.., umax }                (11) 

                           y3(t+i)= gi+siumax +f0umin                     (12)  
Case 4:                     u4(t)  = {umax, umax,.., umax }          (13) 
                                y4(t+i)= gi+siumax +f0umax                  (14)  
The sequences (6), (9), (11), (13) were selected after a lot of experiments on 

different processes. Using these four pair sequences, it is possibly to compute:  
Case 1:                   ymax0 =  {y

i
max 1(t+i)}i=d..N                                       (15)  

Case 2:                   ymax1=  {y
i

max 2(t+i)}i=d..N                                         (16) 

Case 3:                   ymin0= {y
i

min 3(t+i)}i=d..N                                           (17) 

Case 4:                   ymin1= min  {y
i

4(t+i)}i=k..N                                              (18) 

 In figures 2,3 there are presented the predictions of output in some usual cases. 
Here, it was used a thermal process with dead time, but next assumptions are generally. 
The difference between {u1(t)} and {u2(t)} or {u3(t)} and {u4(t)}, can lead to a 
considerable difference between output predictions. Also, the predictions depend on 
gain factor, time constants and dead time. 

 

 
Figure 2:  Cases for output predictions using {u1(t), {u2(t)} 

 

 
Figure 3:  Cases for output predictions using {u3(t), {u4(t)} 

 
These four pair sequences {us(t+i),ys(t+i); s=1..4,i=d..N} and  the extremes 

(15)..(18) can be used to compute the ‘optimal’ command  u(t0). For a first stage, the 
quadratic cost function (1), will be replaced with minimizing of the future errors 
between output and setpoint. The control increments are not penalized. 
 Let’s consider four usual situations: 
Case 1:  If:            ymax0<yr  (corresponding to u1(t) sequence) 

                                    ymax1>yr  (corresponding to u2(t) sequence)                     (19) 
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Then ‘optimal’ command u(t0) is (using a linear approximation - figure 4): 
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Case 2: If:            ymin0<yr  (corresponding to u3(t) sequence)  
                                    ymin1>yr  (corresponding to u4(t) sequence)          (21) 
Then ‘optimal’ command u(t0) is (using a linear approximation – figure 4): 
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Case 3:If:            ymax0>yr  (corresponding to u1(t) sequence)   
Then   u(t0)=umin  (figure 4)                                                         (23) 

Case 4: If:                 ymax1<yr   (corresponding to u2(t) sequence)   
Then    u(t0)=umax (figure 4)                                                         (24) 

 

 
Figure 4:  Cases for u(t0) computing  

 
Similar to cases 3, 4 there are two cases when dy/dt<0 for t<t0. 
 

3. COMMENTS  
 

The manner of control sequences choosing is very simply and intuitive. A main 
advantage is the fact that the extremes umax, umin are used directly in control algorithm. It 
is possibly to choose another type or/and number of sequences. The main question is: 
how can be used the extremes (15)..(18), or, more generally: how can be used the 
predictions of output to obtain the ‘optimal’ command u(t)? The problem becomes very 
complex if consider the constraints on input and/or output, variable setpoint, 
perturbations, etc. 

The command sequences (6), (9), (11), (13) respect two kind of demands: 
1. On line simulations of future behaviour of system using sequences that 

contain only one of extremes of control signal umax or umin (u1(t), u4(t)). These on line 
simulations are useful in transitory regime. 

2. On line simulations using sequences which differ only for u(t) - the pairs of 
sequences u1(t), u2(t) respectively u3(t),u4(t). These on line simulations are useful 
especially in stationary regime and they show the effects of u(t) choosing. 

The algorithm was tested (in simulations and practice) using different processes. 
These simulations and experiments led to next remarks: 

1. Using only rules (19)..(24), the algorithm leads to a large variance of control 
signal, usual between umax and umin, especially in stationary regime. It is possibly a 
stabilization of control signal; this thing depends on setpoint, time constants, dead time 
etc. But it is difficult to maintain control signal stabilization, especially for important 
noise or/and identification errors. If it is necessary, the algorithm must be modified to 
obtain control signal stabilization. However, if it is used an on/off actuator (a usual case 

Page 4 of 6 



A&QT-R 2002 (THETA 13) 
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics 

May 23 – 25, 2002, Cluj-Napoca, Romania 
 

in practice), the stabilization of control signal is not necessary. For example, a thermal 
process with electric heat; in this case, the control is better, comparatively with an 
on/off control. 

2. After an important change of setpoint or after a considerable perturbation, the 
algorithm builds one of next sequences: {umax, umax,..umax} or {umin, umin,..umin}. When 
the stationary regime begins, even for a accurate model, after a first small override, it is 
possibly to obtain a larger override. This phenomenon will be repeated but with 
dumping; it is amplified at the beginning of parameters identification or if the process 
parameters are modified. This phenomenon appears because in relations (15)..(18) the 
values of extremes (ymax0, ymax1, ymin0, ymin1} are resulted due to old (in time) control 
signals and the actual control signal is not computed correctly. 

So, the algorithm must be modified in a view to minimize the two effects.  
 
4. THE MODIFIED ALGORITHM (A1) 
 
The behaviour of system is considerable influenced by the selected desired 

trajectory. For example, if the setpoint is changed considerable, it is possibly that 
algorithm to build a sequence {umax, umax, ... umax,} or a sequence {umin, umin, ... umin,} for 
a few sample periods. It is possibly to obtain a better behaviour if the desired trajectory 
is modified: 

yr1(t)=yr(t)+kref[y(t)-yr(t)]         (25) 
where yr1(t) is the desired trajectory and kref is a control parameter. A cautious value 
used in many applications is kref=0.3..0.5. If difference between process and model is 
significantly, kref must rise (kref>0.5); this parameter can be modified using a function of 
identification quality. 
 For control signal stabilisation there are used next methods: 

1. An algorithm that modifies the limits (uminst,umaxst) of control signal. 
 It is defined average of error using equate: 

amed(t) = kamedamed(t-1)+(1-kamed)|yr(t)-y(t)|       (26)  
where kamed is a weight factor. 
 It is defined Csta -a counter of stationary regime and Ctr a counter of transitory 
regime. In transitory regime, Csta = 0; in stationary regime, at every sample period, Csta 
is incremented. The stationary regime begins after a sequence {umaxst,umaxst,..,umaxst}or 
{uminst,uminst,..,uminst} when the algorithm build u(t) u(t-1). ≠
 There are defined umaxst(t) and uminst(t) the limits of control signal that are 
accepted at sample period ‘t’. The stationary regime is divided by using of two 
parameters 0< Vsta1 < Vsta2 : 
 - for 0 < Csta  V≤ sta1 is ‘initial part of stationary regime’ and: 

                                amed(t)=0; umaxst(t)=umax ; uminst(t)=umin ;                               (27) 
 - for Vsta1 < Csta ≤  Vsta2 is ‘stabilization part of stationary regime’ 
 - for Vsta2 < Csta is ‘final part of stationary regime’ 
   If    Vsta1 < Csta  then: 

amed(t)=Kamedamed(t-1)+(1-Kamed)|yr(t)-y(t)|                                     (28)                     
umaxst(t)= umaxst(t-1)-Kst[umaxst(t-1)-ust(t)]+Kaamed(t)                        (29) 

                     uminst(t)= uminst(t-1)+Kst[ust(t)- umaxst(t-1)]-Kaamed(t)                        (30) 
where Kst is a weight factor which controls the decrease of difference umaxst(t)- uminst(t)
and ust(t) is the prediction of control signal in stationary regime: 

ust(t) r
m21

n21 y
b..bb

a..aa1
+++

++++=                         (31) 
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The difference umaxst(t)- uminst(t) must be greater than a minimal value dust. In 
expressions (6)..(14), (19)..(24) the value of umaxst(t), uminst(t) are used instead of umax, 
umin. The control parameters Vsta1, Vsta2, kamed, kst, ka, dust can be choose in large limits. 
In expression (31), the value of ust can be changed with the average of signal control: 

 umed(t)=kumedumed(t)+(1-kumed)u(t)                   (32) 
where kumed is a weight factor. 

Ka is a parameter that controls the increase of difference umaxst(t)- uminst(t) if  
amed(t) increases. The effect of this parameter is important if there are significant 
differences between process and model. 

The parameter Vsta1 controls the number of sample periods when the algorithm 
builds umaxst(t)=umax and uminst(t)=umin. This larger variance of control signal has a 
positive effect for identification algorithm. 

2. In stationary regime, for Vsta2<Csta, it is used the average of control signal: 
 u(t)= kuu*(t)+(1-ku)umed        (33) 

where u*(t) was choose using (19)..(24) and ku is a weight factor. Another possibility 
(especially for an accurate model) is: 

 u(t)= kuu*(t)+(1-ku)ust         (34) 
 If Csta>Vsta2 and the error |y(t)-yr(t)| is greater then a accepted value ∆p, this is 
the case of perturbation regime, or a very inaccurate model; the solution is to make 
Csta=0 (or anther value lesser than Vsta1). This permits to algorithm to build a control 
signal with large variance (is useful for identification algorithm). 
  

5. CONCLUSIONS 
 
 This paper presents some principles of an adaptive-predictive algorithm that 
uses on-line simulation and rule based control. The on-line simulations for a few 
command sequences, allow the obtaining of the “optimal” control signal u(t). The 
parameters of algorithm can be optimized using a supervisor algorithm. 
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